- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Let $P(x)=x^3+px^2+qx+r$ and $Q(x)=x^3+qx^2+rx+p$, where $p,\,q,\,r$ are integers with $r\ne 0$. Suppose $P(1)=0$ and the roots of $Q(x)$ are squares of the roots of $P(x)$. Find the value of $p^{2014}+q^{2014}+r^{2014}$.