Evaluate Quotient: $ab+cd \over ad+bc$

  • MHB
  • Thread starter anemone
  • Start date
  • Tags
    quotient
In summary, the system of equations given is $a^2 + d^2 - ad = b^2 + c^2 + bc$ and $a^2 + b^2 = c^2 + d^2$. To find the possible values of the expression $\dfrac{ab + cd}{ad + bc}$, we can use the substitution method or solve for one variable in terms of the other and then substitute it into the other equation. After simplifying, we get $a = \dfrac{b(c - d)}{c + d}$ and $c = \dfrac{a(d - b)}{d + b}$. Substituting these into the expression, we get $\dfrac
  • #1
anemone
Gold Member
MHB
POTW Director
3,883
115
Given positive real numbers $a,\,b,\,c,$ and $d$ that satisfy the system below:

$a^2+ d^2-ad = b^2+ c^2+ bc$ and

$a^2+ b^2= c^2+ d^2$.

Find all possible values of the expression $\dfrac{ab + cd}{ad + bc}$.
 
Mathematics news on Phys.org
  • #2
anemone said:
Given positive real numbers $a,\,b,\,c,$ and $d$ that satisfy the system below:

$a^2+ d^2-ad = b^2+ c^2+ bc$ and

$a^2+ b^2= c^2+ d^2$.

Find all possible values of the expression $\dfrac{ab + cd}{ad + bc}$.

Hint:

This problem can easily be solved geometrically...(Wink)(Happy)
 
  • #3
anemone said:
Hint:

This problem can easily be solved geometrically...(Wink)(Happy)
$\dfrac {\sqrt 3}{2}\approx 0.87$
 
Last edited:
  • #4
anemone said:
Given positive real numbers $a,\,b,\,c,$ and $d$ that satisfy the system below:

$a^2+ d^2-ad = b^2+ c^2+ bc---(1)$ and

$a^2+ b^2= c^2+ d^2--(2)$.

Find all possible values of the expression $\dfrac{ab + cd}{ad + bc}---(3)$.
my solution:
$A,B,C,D$ are four ponts on a circle with radius 1, $\overline{AC}$ is a diameter=2)
let:$\angle BCD=60^o,\overline{AB}=c,\overline{BC}=d,\overline{CD}=a,\overline{AD}=b$
then use law of cosine and pythagorean theorem ,it is easy to see that both (1) and (2) satisfy
for simple calculation we may let :$a=d=\sqrt 3,b=c=1$
we get (3)=$\dfrac {\sqrt 3}{2}\approx 0.87$
 
Last edited:
  • #5
$a^2+ d^2-ad = b^2+ c^2+ bc=>a^2-b^2 = c^2 -d^2 + ad +bc \cdots(1)$ and
$a^2+ b^2= c^2+ d^2\cdots(2)$.
we can take $a = r\cos\,t, b= r\sin\,t, c = r\sin\, x, d= r\cos\,x$ to satisfy (2) so we get from (1)
$r^2(\cos^2 t - \sin ^2 t) = r^2(sin ^2 x - \cos ^2 x) + r^2(\cos\,t \cos\, x + \sin\,t \sin\, x)$
or $\cos 2t - \cos 2x = \cos(t-x)$
or $2\cos (t +x)\cos (t-x) = \cos(t-x)$
or $\cos (t +x) = \frac{1}{2}$
or $t+x = 60^\circ\cdots(3)$
$\frac{ab + cd}{ad + bc}= \frac{\sin t \cos t + \sin x \cos x}{\sin t \cos x + \cos t \sin x}$
$= \frac{\sin 2 t + \sin 2x}{2\sin (t +x)}$.
$= \frac{2(\sin (t + x)\cos(t-x)}{2\sin (t +x)}=\cos(t-x)$
from (3) we get $t =60^\circ-x$
so $\cos(t-x) = \cos(60^\circ- 2x)$ as as x is $> 0$ to $< 60^\circ$ we get the range of the value say A satisfying $1 >=A>\frac{1}{2}$
 
Last edited:
  • #6
kaliprasad said:
$a^2+ d^2-ad = b^2+ c^2+ bc=>a^2-b^2 = c^2 -d^2 + ad +bc \cdots(1)$ and
$a^2+ b^2= c^2+ d^2\cdots(2)$.
we can take $a = r\cos\,t, b= r\sin\,t, c = r\sin\, x, d= r\cos\,x$ to satisfy (2) so we get from (1)
$r^2(\cos^2 t - \sin ^2 t) = r^2(sin ^2 x - \cos ^2 x) + r^2(\cos\,t \cos\, x + \sin\,t \sin\, x)$
or $\cos 2t - \cos 2x = \cos(t-x)$
or $2\cos (t +x)\cos (t-x) = \cos(t-x)$
or $\cos (t +x) = \frac{1}{2}$
or $t+x = 60^\circ\cdots(3)$
$\frac{ab + cd}{ad + bc}= \frac{\sin t \cos t + \sin x \cos x}{\cos t \cos x + \sin t \sin x}$
$= \frac{\sin 2 t + \sin 2x}{2\sin (t +x)}$.
$= \frac{2(\sin (t + x)\cos(t-x)}{2\sin (t +x)}=\cos(t-x)$
from (3) we get $t =60^\circ-x$
so $\cos(t-x) = \cos(60^\circ- 2x)$ as as x is from 0 to $< 60^\circ$ we get the range of the value say A satisfying $1 >=A>\frac{1}{2}$
if $x=0$ then $c=0$
but we are given $a,b,c,d>0$
if $t+x=60^o$ then the answer seemed always remain the same =$\dfrac{\sqrt 3}{2}$ (fixed)
I tried many pairs of angles $t$ and $x$ (with $t+x=60^o$ )
(I chceked the result using $"GSP"$)
the result should be :
$\frac{ab + cd}{ad + bc}= \frac{\sin t \cos t + \sin x \cos x}{\cos t \cos x + \sin t \sin x}$
$= \frac{\sin 2 t + \sin 2x}{2\cos (t -x)}$.
$= \frac{2(\sin (t + x)\cos(t-x)}{2\cos (t -x)}=\sin(t+x)=sin 60^o=\dfrac {\sqrt 3}{2}$
 
Last edited:
  • #7
kaliprasad said:
$a^2+ d^2-ad = b^2+ c^2+ bc=>a^2-b^2 = c^2 -d^2 + ad +bc \cdots(1)$ and
$a^2+ b^2= c^2+ d^2\cdots(2)$.
we can take $a = r\cos\,t, b= r\sin\,t, c = r\sin\, x, d= r\cos\,x$ to satisfy (2) so we get from (1)
$r^2(\cos^2 t - \sin ^2 t) = r^2(sin ^2 x - \cos ^2 x) + r^2(\cos\,t \cos\, x + \sin\,t \sin\, x)$
or $\cos 2t - \cos 2x = \cos(t-x)$
or $2\cos (t +x)\cos (t-x) = \cos(t-x)$
or $\cos (t +x) = \frac{1}{2}$
or $t+x = 60^\circ\cdots(3)$
$\frac{ab + cd}{ad + bc}= \frac{\sin t \cos t + \sin x \cos x}{\sin t \cos x + \cos t \sin x}$
$= \frac{\sin 2 t + \sin 2x}{2\sin (t +x)}$.
$= \frac{2(\sin (t + x)\cos(t-x)}{2\sin (t +x)}=\cos(t-x)$
from (3) we get $t =60^\circ-x$
so $\cos(t-x) = \cos(60^\circ- 2x)$ as as x is $> 0$ to $< 60^\circ$ we get the range of the value say A satisfying $1 >=A>\frac{1}{2}$

Hi kaliprasad! It took me a while to realize you have a mistake when you are to find the expression of the intended quotient in terms of sine and cosine functions...
 
  • #8
anemone said:
Hi kaliprasad! It took me a while to realize you have a mistake when you are to find the expression of the intended quotient in terms of sine and cosine functions...

Thanks anemone here is the solution

$a^2+ d^2-ad = b^2+ c^2+ bc=>a^2-b^2 = c^2 -d^2 + ad +bc \cdots(1)$ and
$a^2+ b^2= c^2+ d^2\cdots(2)$.
we can take $a = r\cos\,t, b= r\sin\,t, c = r\sin\, x, d= r\cos\,x$ to satisfy (2) so we get from (1)
$r^2(\cos^2 t - \sin ^2 t) = r^2(sin ^2 x - \cos ^2 x) + r^2(\cos\,t \cos\, x + \sin\,t \sin\, x)$
or $\cos 2t - \cos 2x = \cos(t-x)$
or $2\cos (t +x)\cos (t-x) = \cos(t-x)$
or $\cos (t +x) = \frac{1}{2}$
or $t+x = 60^\circ\cdots(3)$
correct till this
now for the second part which is corrected as below

$\frac{ab + cd}{ad + bc}= \frac{\cos t \sin t + \sin x \cos x}{\cos t \cos x + \sin t \sin x}$
$= \frac{\sin 2 t + \sin 2x}{2\cos (t-x)}$.
$= \frac{2(\sin (t + x)\cos(t-x)}{2\cos (t -x)}=\sin(t+x)= \sin(60^\circ) = \frac{\sqrt3}{2}$
 

FAQ: Evaluate Quotient: $ab+cd \over ad+bc$

What is the purpose of evaluating the quotient $ab+cd \over ad+bc$?

The purpose of evaluating this quotient is to simplify a rational expression and determine its numerical value.

How is the quotient $ab+cd \over ad+bc$ different from a regular fraction?

The quotient $ab+cd \over ad+bc$ is a rational expression, which means it contains variables in the numerator and/or denominator, whereas a regular fraction only contains numbers.

What is the process for evaluating the quotient $ab+cd \over ad+bc$?

The process for evaluating this quotient involves factoring the numerator and denominator, canceling out common factors, and then simplifying the remaining expression.

Can the quotient $ab+cd \over ad+bc$ be simplified further?

In most cases, yes, the quotient $ab+cd \over ad+bc$ can be simplified further by canceling out all common factors between the numerator and denominator. However, in some cases, the expression may be in its simplest form already.

What are some real-world applications of evaluating the quotient $ab+cd \over ad+bc$?

Evaluating this quotient can be useful in various fields such as engineering, finance, and physics. For example, it can be used to calculate the total resistance in an electrical circuit or determine the average cost per unit for a product.

Similar threads

Back
Top