Evaluate Sum: $\cos^3\beta/\cos\alpha + \sin^3\beta/\sin\alpha$

  • MHB
  • Thread starter anemone
  • Start date
  • Tags
    Sum
In summary, if $\dfrac{\cos \alpha}{\cos \beta}+\dfrac{\sin \alpha}{\sin \beta}=-1$, then $\dfrac{\cos^3 \beta}{\cos \alpha}+\dfrac{\sin^3 \beta}{\sin \alpha}=1$.
  • #1
anemone
Gold Member
MHB
POTW Director
3,883
115
If $\dfrac{\cos \alpha}{\cos \beta}+\dfrac{\sin \alpha}{\sin \beta}=-1$, evaluate $\dfrac{\cos^3 \beta}{\cos \alpha}+\dfrac{\sin^3 \beta}{\sin \alpha}$.
 
Mathematics news on Phys.org
  • #2
anemone said:
If $\dfrac{\cos \alpha}{\cos \beta}+\dfrac{\sin \alpha}{\sin \beta}=-1$, evaluate $\dfrac{\cos^3 \beta}{\cos \alpha}+\dfrac{\sin^3 \beta}{\sin \alpha}$.

If we let $\sin \alpha=m$, $\sin \beta=n$, $\dfrac{\cos \alpha}{\cos \beta}=p$, the original given equality can rewritten as:

$\dfrac{\cos \alpha}{\cos \beta}+\dfrac{\sin \alpha}{\sin \beta}=-1$ $\rightarrow p+\dfrac{m}{n}=-1$

$\therefore \dfrac{m}{n}=-1-p$

$\therefore-n=\dfrac{m}{1+p}$

$\therefore m=-n(1+p)$
$\therefore p+\dfrac{m}{\sin \beta}=-1$

$\sin \beta=-\left( \dfrac{m}{1+p} \right)$

$\sin^2 \beta=\left( \dfrac{m}{1+p} \right)^2$

$\sin^2 \beta=n^2$

$1-\sin^2 \beta=1-n^2$

$\cos^2 \beta=1-n^2$
$\therefore \dfrac{\cos^2 \alpha}{\cos^2 \beta}=p^2$

$\dfrac{1-\sin^2 \alpha}{1-\sin^2 \beta}=p^2$

$\dfrac{1-m^2}{1-n^2}=p^2$

$1-m^2=p^2(1-n^2)$

$1-(n(1+p))^2=p^2(1-n^2)$

$p^2+n^2+2pn^2=1$

We're asked to evaluate

$\begin{align*}

\dfrac{\cos^3 \beta}{\cos \alpha}+\dfrac{\sin^3 \beta}{\sin \alpha}&=\dfrac{\cos^2 \beta }{\dfrac{\cos \alpha}{\cos \beta}}+\dfrac{\sin^2 \beta}{\dfrac{\sin \alpha}{\sin \beta}}\\&=\dfrac{\cos^2 \beta }{p}+\dfrac{\sin^2 \beta}{\dfrac{m}{n}}\\&=\dfrac{\cos^2 \beta }{p}+\dfrac{\sin^2 \beta}{-1-p}\\&=\dfrac{1-n^2 }{p}-\dfrac{n^2}{1+p}\\&=\dfrac{(1-n^2)(1+p)-pn^2}{p(1+p)}\\&=\dfrac{1-n^2+p-pn^2-n^2p}{p(1+p)}\\&=\dfrac{1-(n^2+p^2+2pn^2-p^2)+p}{p(1+p)}\\&=\dfrac{1-1+p^2+p}{p(1+p)}\\&=\dfrac{\cancel{p(1+p)}}{ \cancel{p(1+p)}}\\&=1 \end{align*}$
 

FAQ: Evaluate Sum: $\cos^3\beta/\cos\alpha + \sin^3\beta/\sin\alpha$

What is the purpose of the "Evaluate Sum: $\cos^3\beta/\cos\alpha + \sin^3\beta/\sin\alpha$" equation?

The purpose of this equation is to find the sum of two trigonometric expressions, involving cosine and sine functions, with variables alpha and beta.

How do you evaluate this sum?

To evaluate this sum, you can use the trigonometric identity cos^3x = (1/4)(3cosx + cos3x) and sin^3x = (1/4)(3sinx - sin3x). Then, substitute these identities into the equation and simplify using basic algebraic manipulations.

Can this equation be solved for specific values of alpha and beta?

Yes, this equation can be solved for specific values of alpha and beta. However, it is important to note that the solution may depend on the values chosen for these variables.

Is this sum always defined?

No, this sum is not always defined. It is only defined when the denominators, cos alpha and sin alpha, are not equal to zero.

What is the significance of this sum in the field of trigonometry?

This sum is significant in trigonometry as it demonstrates the use of trigonometric identities to simplify expressions and solve equations involving cosine and sine functions. It also highlights the importance of understanding the domains of trigonometric functions in order to properly evaluate expressions.

Similar threads

Replies
5
Views
2K
Replies
4
Views
1K
Replies
5
Views
2K
Replies
3
Views
950
Replies
2
Views
797
Back
Top