- #1
alexmahone
- 304
- 0
Evaluate using telescoping sums:
(a) $\sum_1^\infty\frac{(-1)^{n-1}}{n(n+2)}$
(b) $\sum_1^\infty\frac{1}{n(n+k)}$, $k$ integer $>0$
My attempt:
(a)$\frac{1}{n(n+2)}=\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+2}\right)$
Adding the terms for $n$ even, we get
$-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\ldots\right)=-\frac{1}{4}$
Adding the terms for $n$ odd, we get
$\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\ldots\right)=\frac{1}{2}$
So, the total is $-\frac{1}{4}+\frac{1}{2}=\frac{1}{4}$
(b) $\sum_1^\infty\frac{1}{n(n+k)}=\sum_1^\infty\frac{1}{k}\left(\frac{1}{n}-\frac{1}{n+k}\right)$
$=\frac{1}{k}\left(\frac{1}{1}-\frac{1}{1+k}+\frac{1}{2}-\frac{1}{2+k}+\frac{1}{3}-\frac{1}{3+k}+\ldots\right)$
How do I proceed?
(a) $\sum_1^\infty\frac{(-1)^{n-1}}{n(n+2)}$
(b) $\sum_1^\infty\frac{1}{n(n+k)}$, $k$ integer $>0$
My attempt:
(a)$\frac{1}{n(n+2)}=\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+2}\right)$
Adding the terms for $n$ even, we get
$-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\ldots\right)=-\frac{1}{4}$
Adding the terms for $n$ odd, we get
$\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\ldots\right)=\frac{1}{2}$
So, the total is $-\frac{1}{4}+\frac{1}{2}=\frac{1}{4}$
(b) $\sum_1^\infty\frac{1}{n(n+k)}=\sum_1^\infty\frac{1}{k}\left(\frac{1}{n}-\frac{1}{n+k}\right)$
$=\frac{1}{k}\left(\frac{1}{1}-\frac{1}{1+k}+\frac{1}{2}-\frac{1}{2+k}+\frac{1}{3}-\frac{1}{3+k}+\ldots\right)$
How do I proceed?
Last edited: