- #1
wahaj
- 156
- 2
Homework Statement
[tex]\int_S 2z+1 dS [/tex]
where S is the surface
[tex] z = 16-x^2-y^2 \quad z>0[/tex]
Homework Equations
[tex]\int_S f dS = \int_S f(S(u,v)) | \frac{\partial S}{\partial u }\times \frac{\partial S}{\partial v } | dudv[/tex]
The Attempt at a Solution
let
[tex] x= u \quad y=v[/tex]
[tex] z = 16 - u^2-v^2[/tex]
[tex]S=(u,v,16-u^2-v^2)[/tex]
[tex] -4 \le u \le 4 \quad -4\le v \le 4[/tex]
[tex]\frac{\partial S}{\partial u } = (1, 0, -2u) \quad \frac{\partial S}{\partial v } = (0,1,-2v) [/tex]
[tex]| \frac{\partial S}{\partial u }\times \frac{\partial S}{\partial v }| = \sqrt(4u^2+4v^2+1)[/tex]
[tex]\int_{-4}^4 \int_{-4}^4 (2(16-u^2-v^2)+1) \sqrt (4u^2+4v^2+1) dudv [/tex]
using wolfram the answer I get is 2771.99. However this answer is wrong. This is my first time doing surface integrals and parameterizing surfaces so I can't figure out where I am wrong.