Evaluate the Legendre symbol ## (999|823) ##

In summary, using the Quadratic Reciprocity Law and Euler's Criterion, we can evaluate the Legendre symbol ## (999|823) ## as ## (999|823)=-1 ##. This is because ## 999\equiv 176\pmod{823} ## and thus ## (999|823)=(176|823)=(4^{2}|823)(11|823) ##. Since ## (a^{2}|p)=1 ##, we know that ## (4^{2}|823)=1 ##, and therefore ## (999|823)=(11|823) ##. Applying the Quadratic Reciprocity Law, we have that ## (11|823)(823|11)=(-1)^{(11
  • #1
Math100
797
221
Homework Statement
Evaluate the Legendre symbol ## (999|823) ##.
(Note that ## 823 ## is prime.)
Relevant Equations
Let ## p ## be an odd prime. If ## n\not\equiv 0\pmod {p} ##, we define Legendre's symbol ## (n|p) ## as follows:
## (n|p)=+1 ## if ## nRp ##, and ## (n|p)=-1 ## if ## n\overline{R}p ##.
If ## n\equiv 0\pmod {p} ##, we define ## (n|p)=0 ##.
Consider ## (999|823) ##.
Then ## 999\equiv 176\pmod {823} ##.
This implies ## (999|823)=(176|823)=(16|823)(11|823)=(4^{2}|823)(11|823) ##.
Since ## (a^{2}|p)=1 ##, it follows that ## (4^{2}|823)=1 ##.
Thus ## (999|823)=(11|823) ##.
Applying the Quadratic reciprocity law, we have that
## (11|823)(823|11)=(-1)^{(11-1)(823-1)/4}=(-1)^{2055}=-1 ##.
Therefore, ## (999|823)=-1 ##.
 
Physics news on Phys.org
  • #2
Math100 said:
Homework Statement:: Evaluate the Legendre symbol ## (999|823) ##.
(Note that ## 823 ## is prime.)
Relevant Equations:: Let ## p ## be an odd prime. If ## n\not\equiv 0\pmod {p} ##, we define Legendre's symbol ## (n|p) ## as follows:
## (n|p)=+1 ## if ## nRp ##, and ## (n|p)=-1 ## if ## n\overline{R}p ##.
If ## n\equiv 0\pmod {p} ##, we define ## (n|p)=0 ##.

Consider ## (999|823) ##.
Then ## 999\equiv 176\pmod {823} ##.
This implies ## (999|823)=(176|823)=(16|823)(11|823)=(4^{2}|823)(11|823) ##.
Since ## (a^{2}|p)=1 ##, it follows that ## (4^{2}|823)=1 ##.
Thus ## (999|823)=(11|823) ##.
Applying the Quadratic reciprocity law, we have that
## (11|823)(823|11)=(-1)^{(11-1)(823-1)/4}=(-1)^{2055}=-1 ##.
Therefore, ## (999|823)=-1 ##.
Looks good, although the notation is odd and I can only guess what ##nRp## means.

With Euler's criterion, we get
\begin{align*}
\left(\dfrac{999}{823}\right)&=\left(\dfrac{176}{823}\right)=176^{411}=\ldots = 822 = -1 \pmod{823}
\end{align*}
 
  • Like
Likes Math100
  • #3
fresh_42 said:
Looks good, although the notation is odd and I can only guess what ##nRp## means.

With Euler's criterion, we get
\begin{align*}
\left(\dfrac{999}{823}\right)&=\left(\dfrac{176}{823}\right)=176^{411}=\ldots = 822 = -1 \pmod{823}
\end{align*}
I think ## nRp ## means that ## n ## is a quadratic residue mod ## p ##. And ## n\overline{R}p ## if ## n ## is a quadratic nonresidue mod ## p ##. But how did you get ## 176^{411}=...=822 ##?
 
  • #4
Math100 said:
I think ## nRp ## means that ## n ## is a quadratic residue mod ## p ##. And ## n\overline{R}p ## if ## n ## is a quadratic nonresidue mod ## p ##.
Sure. I know. But the acronym is unusual.
Math100 said:
But how did you get ## 176^{411}=...=822 ##?
I got it with WA but you have solved such equations before. ##411=3\cdot 137## should help a bit.
 
  • Like
Likes Math100

FAQ: Evaluate the Legendre symbol ## (999|823) ##

What is the Legendre symbol?

The Legendre symbol is a mathematical function used in number theory to determine whether a given number is a quadratic residue modulo a prime number.

How is the Legendre symbol evaluated?

The Legendre symbol is evaluated using the Euler's criterion, which states that the Legendre symbol of a number ##a## modulo a prime number ##p## is equal to ##a^{\frac{p-1}{2}} \pmod p##.

What does the notation ## (a|p) ## mean in the Legendre symbol?

The notation ## (a|p) ## represents the Legendre symbol of ##a## modulo a prime number ##p##. It is also known as the Jacobi symbol, which is a generalization of the Legendre symbol.

How is the Legendre symbol used in number theory?

The Legendre symbol is used in number theory to solve various problems related to quadratic residues, including determining the solvability of quadratic congruences and finding primitive roots modulo a prime number.

What is the value of ## (999|823) ##?

The value of ## (999|823) ## is ##-1##, which indicates that 999 is not a quadratic residue modulo 823.

Similar threads

Replies
5
Views
2K
Replies
14
Views
1K
Replies
4
Views
1K
Replies
2
Views
886
Replies
3
Views
1K
Back
Top