- #1
Math100
- 804
- 223
- Homework Statement
- Evaluate the Legendre symbol ## (999|823) ##.
(Note that ## 823 ## is prime.)
- Relevant Equations
- Let ## p ## be an odd prime. If ## n\not\equiv 0\pmod {p} ##, we define Legendre's symbol ## (n|p) ## as follows:
## (n|p)=+1 ## if ## nRp ##, and ## (n|p)=-1 ## if ## n\overline{R}p ##.
If ## n\equiv 0\pmod {p} ##, we define ## (n|p)=0 ##.
Consider ## (999|823) ##.
Then ## 999\equiv 176\pmod {823} ##.
This implies ## (999|823)=(176|823)=(16|823)(11|823)=(4^{2}|823)(11|823) ##.
Since ## (a^{2}|p)=1 ##, it follows that ## (4^{2}|823)=1 ##.
Thus ## (999|823)=(11|823) ##.
Applying the Quadratic reciprocity law, we have that
## (11|823)(823|11)=(-1)^{(11-1)(823-1)/4}=(-1)^{2055}=-1 ##.
Therefore, ## (999|823)=-1 ##.
Then ## 999\equiv 176\pmod {823} ##.
This implies ## (999|823)=(176|823)=(16|823)(11|823)=(4^{2}|823)(11|823) ##.
Since ## (a^{2}|p)=1 ##, it follows that ## (4^{2}|823)=1 ##.
Thus ## (999|823)=(11|823) ##.
Applying the Quadratic reciprocity law, we have that
## (11|823)(823|11)=(-1)^{(11-1)(823-1)/4}=(-1)^{2055}=-1 ##.
Therefore, ## (999|823)=-1 ##.