- #1
docnet
Gold Member
- 799
- 486
- Homework Statement
- evaluate the quotient of two complex numbers
- Relevant Equations
- evaluate the quotient of two complex numbers
Let ##|z|=1## and ##1-\bar{a}z\neq 0##.
Evaluate ##\frac{|z-a|}{|1-\bar{a}z|}##. It should be a real number.
I read that ##f=\frac{|z-a|}{|1-\bar{a}z|}## is a mobious transformation, but I do not know what it means. @fresh_42##z=e^{i\theta_1}, a=r_2e^{i\theta_2}##
##\frac{|z-a|}{|1-\bar{a}z|}=\frac{|e^{i\theta_1}-r_2e^{i\theta_2}|}{|1-r_2e^{i(\theta_1-\theta_2)}|}##
Evaluate ##\frac{|z-a|}{|1-\bar{a}z|}##. It should be a real number.
I read that ##f=\frac{|z-a|}{|1-\bar{a}z|}## is a mobious transformation, but I do not know what it means. @fresh_42##z=e^{i\theta_1}, a=r_2e^{i\theta_2}##
##\frac{|z-a|}{|1-\bar{a}z|}=\frac{|e^{i\theta_1}-r_2e^{i\theta_2}|}{|1-r_2e^{i(\theta_1-\theta_2)}|}##