MHB Evaluate the sum ∑n/[n^4+n^2+1]

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Sum
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate the sum:\[\sum_{n = 0}^{\infty}\frac{n}{n^4+n^2+1}\]
 
Mathematics news on Phys.org
lfdahl said:
Evaluate the sum:\[\sum_{n = 0}^{\infty}\frac{n}{n^4+n^2+1}\]

as 1st term is zero so the um can be taken from 1 to infinite
the n$th$ term is $\frac{n}{n^4+n^2+1}= \frac{n}{n^4+2n^2+1-n^2}= \frac{n}{(n^2+1)^2-n^2}= \frac{n}{(n^2+n+1) (n^2 -n + 1)} $
$=\frac{1}{2}\frac{2n}{(n^2+n+1)(n^2 -n + 1)} $
$=\frac{1}{2}\frac{(n^2+n+1)- (n^2 -n + 1)}{(n^2+n+1)(n^2 -n + 1)} $
$=\frac{1}{2}(\frac{1}{n^2-n+1}-\frac{1}{n^2+n+1}) $
$=\frac{1}{2}(\frac{1}{n(n-1)+1}-\frac{1}{n(n+1)+1}) $
so summing from 1 to infinite we get
sum = $\sum_{1}^\infty(\frac{1}{2}(\frac{1}{n(n-1)+1}-\frac{1}{(n+1)n+1})$
$=\frac{1}{2}(\sum_{1}^\infty(\frac{1}{n(n-1)+1}-\frac{1}{(n+1)n+1})$
$=\frac{1}{2}(\sum_{1}^\infty(\frac{1}{n(n-1)+1})-\sum_{1}^\infty(\frac{1}{(n+1)n+1})$
$=\frac{1}{2}(\sum_{1}^\infty(\frac{1}{n(n-1)+1})-\sum_{2}^\infty(\frac{1}{(n-1)n+1})$
now all the terms except 1st term cancell leaving $=\frac{1}{2}(\frac{1}{1(1-1)+1})$ or $\frac{1}{2}$
 
Last edited by a moderator:
Very nice.

-Dan
 
kaliprasad said:
as 1st term is zero so the um can be taken from 1 to infinite
the n$th$ term is $\frac{n}{n^4+n^2+1}= \frac{n}{n^4+2n^2+1-n^2}= \frac{n}{(n^2+1)^2-n^2}= \frac{n}{(n^2+n+1) (n^2 -n + 1)} $
$=\frac{1}{2}\frac{2n}{(n^2+n+1)(n^2 -n + 1)} $
$=\frac{1}{2}\frac{(n^2+n+1)- (n^2 -n + 1)}{(n^2+n+1)(n^2 -n + 1)} $
$=\frac{1}{2}(\frac{1}{n^2-n+1}-\frac{1}{n^2+n+1}) $
$=\frac{1}{2}(\frac{1}{n(n-1)+1}-\frac{1}{n(n+1)+1}) $
so summing from 1 to infinite we get
sum = $\sum_{1}^\infty(\frac{1}{2}(\frac{1}{n(n-1)+1}-\frac{1}{(n+1)n+1})$
$=\frac{1}{2}(\sum_{1}^\infty(\frac{1}{n(n-1)+1}-\frac{1}{(n+1)n+1})$
$=\frac{1}{2}(\sum_{1}^\infty(\frac{1}{n(n-1)+1})-\sum_{1}^\infty(\frac{1}{(n+1)n+1})$
$=\frac{1}{2}(\sum_{1}^\infty(\frac{1}{n(n-1)+1})-\sum_{2}^\infty(\frac{1}{(n-1)n+1})$
now all the terms except 1st term cancell leaving $=\frac{1}{2}(\frac{1}{1(1-1)+1})$ or $\frac{1}{2}$

Very well done, kaliprasad! (Cool)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top