MHB Evaluate Trig Expressions....Part 2

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Trig
AI Thread Summary
The discussion focuses on evaluating trigonometric expressions, specifically cos 4π/3 and sec 4π/3, using a method outlined in the textbook. For cos 4π/3, the reference angle is calculated as π/6, leading to a value of -1/2, while the evaluation of sec 4π/3 also results in a reference angle of π/6, yielding -2√3/3. The participants note that both angles are in Quadrant 3, where cosine values are negative. There is a preference expressed for using algebraic methods over graphing for finding reference angles. Overall, the discussion emphasizes the importance of understanding reference angles in trigonometric evaluations.
mathdad
Messages
1,280
Reaction score
0
Evaluate the trig expressions using the method shown in the textbook. Steps A through C show the method given in the textbook.

1. cos 4π/3

A. We are told to graph cos 4π/3. We are in Quadrant 3.

B. Find the reference number r.

r = 3π/2 - 4π/3

r = π/6

C. Evaluate r.

cos π/6 = -sqrt{3}/2

Book's answer for r is -1/2.

2. sec 4π/3

A. We are told to graph sec 4π/3.
We are in Quadrant 3.

B. Find the reference number r.

r = 3π/2 - 4π/3

r = π/6

C. Evaluate r.

sec π/6 = -2sqrt{3}/3.

Book's answer for r is -2.
 
Mathematics news on Phys.org
$\dfrac{4\pi}{3}$ is in quad III $\implies$ cosine is negative

reference angle is $\dfrac{4\pi}{3} - \pi = \dfrac{\pi}{3} \implies \cos\left(\dfrac{4\pi}{3}\right) = -\cos\left(\dfrac{\pi}{3}\right) = - \dfrac{1}{2}$
 
I will practice more on finding reference angles using the algebraic method you provided in Part 1, I believe. It's a very easy concept but using the graph can be a bit tricky. I prefer using algebra over graphing any time.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
2
Views
2K
Replies
4
Views
2K
Replies
11
Views
3K
Replies
1
Views
8K
Replies
6
Views
2K
Replies
4
Views
2K
Back
Top