Evaluate Trigonometric Expression.

In summary, the expression cos \left(\frac{\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right) can be evaluated using the general formula $\displaystyle \prod_{j=k}^{n} \cos (2^{j}\ x) = \frac{1}{2^{n-k}}\ \frac {\sin 2^{n+1}\ x
  • #1
anemone
Gold Member
MHB
POTW Director
3,883
115
Evaluate \(\displaystyle \cos \left(\frac{\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)\).
 
Mathematics news on Phys.org
  • #2
anemone said:
Evaluate \(\displaystyle \cos \left(\frac{\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)\).

It exists the general formula...

$\displaystyle \prod_{j=k}^{n} \cos (2^{j}\ x) = \frac{1}{2^{n-k+1}}\ \frac {\sin 2^{n+1}\ x}{\sin 2^{k}\ x}$ (1)

... and setting in (1) $\displaystyle k=0,\ n=5,\ x=\frac{\pi}{65}$ Your product becomes...

$\displaystyle P = \frac{1}{64}\ \frac{\sin \frac{64\ \pi}{65}}{\sin \frac{\pi}{65}} = \frac{1}{64}$ (2)

Probably a more simple way to arrive to the result exists... how to demonstrate (1) is an extra problem... Kind regards $\chi$ $\sigma$
 
Last edited:
  • #3
chisigma said:
It exists the general formula...

$\displaystyle \prod_{j=k}^{n} \cos (2^{j}\ x) = \frac{1}{2^{n-k}}\ \frac {\sin 2^{n+1}\ x}{\sin 2^{k}\ x}$ (1)

... and setting in (1) $\displaystyle k=0,\ n=5,\ x=\frac{\pi}{65}$ Your product becomes...

$\displaystyle P = \frac{1}{32}\ \frac{\sin \frac{64\ \pi}{65}}{\sin \frac{\pi}{65}} = \frac{1}{32}$ (2)

Probably a more simple way to arrive to the result exists... how to demonstrate (1) is an extra problem... Kind regards $\chi$ $\sigma$

Hi chisigma, thanks for participating in this problem and your answer is of course correct and on the level, I didn't realize there was such a formula exists and that we could just apply it to this particular problem and get its answer so easily...
 
  • #4
chisigma said:
It exists the general formula...

$\displaystyle \prod_{j=k}^{n} \cos (2^{j}\ x) = \frac{1}{2^{n-k+1}}\ \frac {\sin 2^{n+1}\ x}{\sin 2^{k}\ x}$ (1)

... and setting in (1) $\displaystyle k=0,\ n=5,\ x=\frac{\pi}{65}$ Your product becomes...

$\displaystyle P = \frac{1}{64}\ \frac{\sin \frac{64\ \pi}{65}}{\sin \frac{\pi}{65}} = \frac{1}{64}$ (2)

Probably a more simple way to arrive to the result exists... how to demonstrate (1) is an extra problem...

The demonstration of the formula...

$\displaystyle \prod_{j=k}^{n} \cos (2^{j}\ x) = \frac{1}{2^{n-k+1}}\ \frac {\sin 2^{n+1}\ x}{\sin 2^{k}\ x}$ (1)

... is 'easy' and, if I remember correctly, this result was known in the Middle Age...

Let's start from the well known formula...

$\displaystyle \sin 2x = 2\ \sin x \cos x$ (2)

Setting in (2) 4x instead of 2x we obtain...

$\displaystyle \sin 4 x = 2\ \sin 2 x\ \cos 2 x = 4\ \sin x\ \cos x\ \cos 2 x$ (3)

Proceeding in the same way we arrive to...

$\displaystyle \sin (2^{n+1} x) = 2^{n+1}\ \sin x\ \prod_{k=0}^{n} \cos (2^{k}\ x)$ (4)

Kind regards

$\chi$ $\sigma$
 
Last edited:
  • #5
anemone said:
Evaluate \(\displaystyle \cos \left(\frac{\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)\).
Let:
\(\displaystyle cos \left(\frac{\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)=k\)
we have :
\(\displaystyle 32\times2\times sin \left(\frac{\pi}{65}\right)\cos \left(\frac{\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)=64sin \left(\frac{\pi}{65}\right)k\)

\(\displaystyle 16\times2\times sin \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)=64sin \left(\frac{\pi}{65}\right) k\)
\(\displaystyle 8\times2\times sin \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)=64sin \left(\frac{\pi}{65}\right) k\)
\(\displaystyle 4\times2\times sin \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)=64sin \left(\frac{\pi}{65}\right) k\)
\(\displaystyle 2\times 2sin \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)=64sin \left(\frac{\pi}{65}\right) k\)
\(\displaystyle 2\times sin \left(\frac{32\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)=64sin \left(\frac{\pi}{65}\right) k\)
\(\displaystyle sin \left(\frac{64\pi}{65}\right)=64sin \left(\frac{\pi}{65}\right) k\)
$\therefore k=\dfrac {1}{64}$
Am I wrong ? Why my answer is different from yours ?
 
  • #6
chisigma said:
It exists the general formula...

$\displaystyle \prod_{j=k}^{n} \cos (2^{j}\ x) = \frac{1}{2^{n-k}}\ \frac {\sin 2^{n+1}\ x}{\sin 2^{k}\ x}$ (1)

Hi chisigma, :)

I think this should be,

\[\prod_{j=k}^{n} \cos (2^{j}\ x) = \frac{1}{2^{n\color{red}{+1}-k}}\ \frac {\sin 2^{n+1}\ x}{\sin 2^{k}\ x}\]
 
  • #7
Albert said:
Let:
\(\displaystyle cos \left(\frac{\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)=k\)

$\therefore k=\dfrac {1}{64}$
Am I wrong ? Why my answer is different from yours ?

I am terribly sorry for misleading the readers who have read this thread for saying the answer \(\displaystyle cos \left(\frac{\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)=\frac{1}{32}\) is correct...

I didn't check my answer but I should be able to tell right away (from my approach) why this wasn't correct because the answer depends wholly on the number of terms that the cosine terms exist.

The correct answer for this trigonometric expression is \(\displaystyle \frac{1}{64}\), as stated by Albert.

My solution:

Let \(\displaystyle P=cos \left(\frac{\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)\)

and\(\displaystyle 2^6Q=2^6(\sin \left(\frac{\pi}{65}\right)\cdot\sin \left(\frac{2\pi}{65}\right)\cdot\sin \left(\frac{4\pi}{65}\right)\cdot\sin \left(\frac{8\pi}{65}\right)\cdot\sin \left(\frac{16\pi}{65}\right)\cdot\sin \left(\frac{32\pi}{65}\right))\)

Multiplying P and \(\displaystyle 2^6Q\) together we obtain

\(\displaystyle 2^6PQ=Q\)

\(\displaystyle P=\frac{1}{2^6}=\frac{1}{64}\)

and this approach is essentially the same as what Albert did in his solution...

I am truly sorry for saying the answer was correct without checking it and I promise I won't make this kind of mistake again and will practice the right forum manners on this site in the future.

Sorry...
 
  • #8
Sudharaka said:
Hi chisigma, :)

I think this should be,

\[\prod_{j=k}^{n} \cos (2^{j}\ x) = \frac{1}{2^{n\color{red}{+1}-k}}\ \frac {\sin 2^{n+1}\ x}{\sin 2^{k}\ x}\]

All right Sudharaka!... I have corrected my past post!... thank You very much!...

Kind regards

$\chi$ $\sigma$
 

FAQ: Evaluate Trigonometric Expression.

What is a trigonometric expression?

A trigonometric expression is a mathematical expression that includes trigonometric functions such as sine, cosine, tangent, or their inverse functions. It may also include variables, constants, and arithmetic operations.

How do you evaluate a trigonometric expression?

To evaluate a trigonometric expression, you need to substitute the given values for the variables into the expression and then use the rules of trigonometric functions to simplify the expression. The final result should be a numerical value.

What are the common trigonometric identities used to evaluate expressions?

Some of the common trigonometric identities used to evaluate expressions include the Pythagorean identities, sum and difference identities, double angle identities, and half-angle identities. These identities help simplify the expressions and make them easier to evaluate.

Can a trigonometric expression have more than one solution?

Yes, a trigonometric expression can have multiple solutions, depending on the given values and the domain of the function. For example, the sine function has infinite solutions, whereas the inverse trigonometric functions have a restricted range and may have multiple solutions within that range.

What are some real-life applications of evaluating trigonometric expressions?

Trigonometry is widely used in various fields such as engineering, physics, navigation, and architecture. Some real-life applications of evaluating trigonometric expressions include calculating distances and angles, designing structures, analyzing waves and sound, and predicting the position of celestial bodies.

Similar threads

Replies
1
Views
1K
Replies
11
Views
2K
Replies
4
Views
1K
Replies
5
Views
1K
Replies
2
Views
5K
Replies
11
Views
894
Back
Top