Evaluate (without a calculator) the product: f(r1+1)⋅f(r2+1)⋅f(r3+1).

In summary, we are given the function f(x) = x^3 + 20x - 17 and asked to find the product of f(r1+1), f(r2+1), and f(r3+1), where r1, r2, and r3 are the roots of the function. This can be evaluated without a calculator.
  • #1
lfdahl
Gold Member
MHB
749
0
Given the function:

$$f(x) = x^3+20x-17.$$

Denote the roots of the function: $r_1,r_2$ and $r_3$.

Evaluate (without a calculator) the product: $f(r_1+1) \cdot f(r_2+1) \cdot f(r_3+1)$.
 
Last edited:
Mathematics news on Phys.org
  • #2
lfdahl said:
Given the function:

$$f(x) = x^3+20x-17.$$

Denote the roots of the function: $r_1,r_2$ and $r_3$.

Evaluate (without a calculator) the product: $f(r_1+1) \cdot f(r_2+1) \cdot f(r_3+1)$.
my solution:
for $r_1^3+20r_1-17=r_2^3+20r_2-17=r_3^3+20r_3-17=0$
Using Vieta's formulas
$r_1+r_2+r_3=0---(1)$
$r_1r_2+r_2r_3+r_3r_1=20---(2)$
$r_1r_2r_3=17---(3)$
$f(r_1+1)=(r_1+1)^3+20(r_1+1)-17=\dfrac {30-42r_1}{r_1-1}---(4)$
$f(r_2+1)=(r_2+1)^3+20(r_2+1)-17=\dfrac {30-42r_2}{r_2-1}---(5)$
$f(r_3+1)=(r_3+1)^3+20(r_3+1)-17=\dfrac {30-42r_3}{r_3-1}---(6)$
$(4)\times(5)\times(6)=$
$\dfrac{27000 - 37800(r_1+r_2+r_3)+ 52920(r_1r_2+r_2r_3+r_3r_1) - 74088(r_1r_2r_3)}{(r_1r_2r_3) -(r_1r_2+r_2r_3+r_3r_1 )+ (r_1 +r_2+r_3 - 1)}$
$=\dfrac{27000+52920*20-74088*17}{17-20-1}=\dfrac{-174096}{-4}=43524$
 
Last edited:
  • #3
Albert said:
my solution:
for $r_1^3+20r_1-17=r_2^3+20r_2-17=r_3^3+20r_3-17=0$
Using Vieta's formulas
$r_1+r_2+r_3=0---(1)$
$r_1r_2+r_2r_3+r_3r_1=20---(2)$
$r_1r_2r_3=17---(3)$
$f(r_1+1)=(r_1+1)^3+20(r_1+1)-17=\dfrac {30-42r_1}{r_1-1}---(4)$
$f(r_2+1)=(r_2+1)^3+20(r_2+1)-17=\dfrac {30-42r_2}{r_2-1}---(5)$
$f(r_3+1)=(r_3+1)^3+20(r_3+1)-17=\dfrac {30-42r_3}{r_3-1}---(6)$
$(4)\times(5)\times(6)=$
$\dfrac{27000 - 37800(r_1+r_2+r_3)+ 52920(r_1r_2+r_2r_3+r_3r_1) - 74088(r_1r_2r_3)}{(r_1r_2r_3) -(r_1r_2+r_2r_3+r_3r_1 )+ (r_1 +r_2+r_3 - 1)}=572724$

I am unable to derive /understand (4)
 
  • #4
kaliprasad said:
I am unable to derive /understand (4)
$f(x)=x^3+20x-17$
$f(r)=r^3+20r-17=0---(1)$ ($r$ is a root of $f$)
$f(r+1)=(r+1)^3+20(r+1)-17=3r^2+3r+21$
from $(1):$ $r^3-1=(r-1)(r^2+r+1)=16-20r$
$r^2+r+1=\dfrac {16-20r}{r-1}$
$\therefore 3r^2+3r+21=\dfrac {30-42r}{r-1}$
 
  • #5
Albert said:
my solution:
for $r_1^3+20r_1-17=r_2^3+20r_2-17=r_3^3+20r_3-17=0$
Using Vieta's formulas
$r_1+r_2+r_3=0---(1)$
$r_1r_2+r_2r_3+r_3r_1=20---(2)$
$r_1r_2r_3=17---(3)$
$f(r_1+1)=(r_1+1)^3+20(r_1+1)-17=\dfrac {30-42r_1}{r_1-1}---(4)$
$f(r_2+1)=(r_2+1)^3+20(r_2+1)-17=\dfrac {30-42r_2}{r_2-1}---(5)$
$f(r_3+1)=(r_3+1)^3+20(r_3+1)-17=\dfrac {30-42r_3}{r_3-1}---(6)$
$(4)\times(5)\times(6)=$
$\dfrac{27000 - 37800(r_1+r_2+r_3)+ 52920(r_1r_2+r_2r_3+r_3r_1) - 74088(r_1r_2r_3)}{(r_1r_2r_3) -(r_1r_2+r_2r_3+r_3r_1 )+ (r_1 +r_2+r_3 - 1)}=572724$

Hi, Albert!Thankyou very much for your interesting approach, but ...

- there must be a miscalculation somewhere. :( The correct end value is $43524$.
 
  • #6
lfdahl said:
Hi, Albert!Thankyou very much for your interesting approach, but ...

- there must be a miscalculation somewhere. :( The correct end value is $43524$.
yes a miscalculation found the answer is 43524
the solution has been edited
what a shame ! my poor calculation
 
Last edited by a moderator:
  • #7
Thankyou, Albert! - for your correct solution!
Please don´t bother because of the previous small miscalculation.
You are indeed a master in solving challenges and puzzles!:cool:

An alternative solution:

First we note, that $f(r_1+1) = 3r_1^2+3r_1+21$, since $r_1^3+20r_1-17 = 0$.

The quadratic polynomium has the roots:

\[3\left ( r_1^2+r_1+7 \right ) =3 \left ( \frac{-1+i3\sqrt{3}}{2}-r_1 \right )\cdot \left (\frac{-1-i3\sqrt{3}}{2}-r_1 \right ) = 3(\alpha -r_1)(\beta -r_1).\]

Now,
\[f(\alpha )=(\alpha-r_1)( \alpha-r_2)( \alpha-r_3 )\\\\
f(\beta )=(\beta-r_1)( \beta-r_2)( \beta-r_3 ) \\\\ \Rightarrow 3^3\cdot f(\alpha )\cdot f(\beta )=3(\alpha -r_1)(\beta -r_1) \cdot 3(\alpha -r_2)(\beta -r_2) \cdot 3(\alpha -r_3)(\beta -r_3)
\\\\=f(r_1+1)f(r_2+1)f(r_3+1)\]

\[f(\alpha )= -17+i 21\sqrt{3}, \: \: f(\beta )= -17-i 21\sqrt{3}\]

Thus, we get:

$ f(r_1+1)f(r_2+1)f(r_3+1)= 27f(\alpha ) f(\beta )= 27(17^2+3\cdot 21^2) = 43524$.
 
Last edited:
  • #8
lfdahl said:
Thankyou, Albert! - for your correct solution!
Please don´t bother because of the previous small miscalculation.
You are indeed a master in solving challenges and puzzles!:cool:

An alternative solution:

First we note, that $f(r_1+1) = 3r_1^2+3r_1+21$, since $r_1^3+20r_1-17 = 0$.

The quadratic polynomium has the roots:

\[3\left ( r_1^2+r_1+7 \right ) =3 \left ( \frac{-1+i3\sqrt{3}}{2}-r_1 \right )\cdot \left (\frac{-1-i3\sqrt{3}}{2}-r_1 \right ) = 3(\alpha -r_1)(\beta -r_1).\]

Now,
\[f(\alpha )=(\alpha-r_1)( \alpha-r_2)( \alpha-r_3 )\\\\
f(\beta )=(\beta-r_1)( \beta-r_2)( \beta-r_3 ) \\\\ \Rightarrow 3^3\cdot f(\alpha )\cdot f(\beta )=3(\alpha -r_1)(\beta -r_1) \cdot 3(\alpha -r_2)(\beta -r_2) \cdot 3(\alpha -r_3)(\beta -r_3)
\\\\=f(r_1+1)f(r_2+1)f(r_3+1)\]

\[f(\alpha )= -17+i 21\sqrt{3}, \: \: f(\beta )= -17-i 21\sqrt{3}\]

Thus, we get:

$ f(r_1+1)f(r_2+1)f(r_3+1)= 27f(\alpha ) f(\beta )= 27(17^2+3\cdot 21^2) = 43524$.
to find the value of $f(\alpha)=-17+21\sqrt 3 i$ and $f(\beta)=-17-21\sqrt 3i$ seemed time-consuming
do you have a better way to get them ?
 
Last edited:
  • #9
Albert said:
to find the value of $f(\alpha)=-17+21\sqrt 3 i$ and $f(\beta)=-17-21\sqrt 3i$ seemed time-consuming
do you have a better way to get them ?

I´m afraid, no. Maybe, someone in the forum knows a less laborious way to follow?
The conversion to polar notation doesn´t make things better:

\[\frac{-1+i3\sqrt{3}}{2} \approx \sqrt{7}\cdot e^{i100.893^{\circ}}\]
:confused:
 
Last edited:
  • #10
Hi guys. Just a friendly reminder to use spoiler tags. Thanks. :D
 
  • #11
greg1313 said:
Hi guys. Just a friendly reminder to use spoiler tags. Thanks. :D

Thankyou, greg1313, for the friendly reminder! :eek:
I will take precaution in future challenge & puzzle correspondence.
 

FAQ: Evaluate (without a calculator) the product: f(r1+1)⋅f(r2+1)⋅f(r3+1).

What is the purpose of evaluating this product without a calculator?

The purpose of evaluating this product without a calculator is to practice and improve our mental math skills and to better understand the properties of functions.

What do the variables r1, r2, and r3 represent in this equation?

The variables r1, r2, and r3 represent the inputs or arguments for the function f. In other words, they are the values that will be plugged into the function to calculate the product.

How do you evaluate the product f(r1+1)⋅f(r2+1)⋅f(r3+1) without a calculator?

To evaluate this product without a calculator, you can use the properties of exponents and logarithms to simplify the expression. For example, if the function f is quadratic, you can expand the expression and then use the quadratic formula to solve for the product.

Are there any special cases to consider when evaluating this product without a calculator?

Yes, there are a few special cases to consider when evaluating this product without a calculator. For instance, if the function f is a logarithmic or exponential function, you may need to use properties of logarithms or exponential rules to simplify the expression. Additionally, if any of the arguments (r1, r2, r3) are negative, you may need to use the rules of exponents to handle negative exponents.

How can evaluating this product without a calculator be useful in real-world applications?

Evaluating this product without a calculator can be useful in situations where you may not have access to a calculator, such as during a test or in a real-world problem-solving scenario. It can also help improve your overall understanding of mathematical concepts and strengthen your problem-solving skills.

Back
Top