MHB Evaluating $a^2+b^2+c^2+d^2$ for Different Equations

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion evaluates the expression $a^2+b^2+c^2+d^2$ based on a series of equations involving the variables $a$, $b$, $c$, and $d$. It establishes a function $f(x)$ that equals 1 at specific squared values of $x$. By manipulating the equation into a quartic form, the sum of the roots is related to the variables and constants involved. The final calculation reveals that $a^2 + b^2 + c^2 + d^2$ equals 36, derived from the differences of squares in the equations. The conclusion highlights the successful evaluation of the expression through mathematical reasoning.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $a^2+b^2+c^2+d^2$ if

$\dfrac{a^2}{2^2-1^2}+\dfrac{b^2}{2^2-3^2}+\dfrac{c^2}{2^2-5^2}+\dfrac{d^2}{2^2-7^2}=1$

$\dfrac{a^2}{4^2-1^2}+\dfrac{b^2}{4^2-3^2}+\dfrac{c^2}{4^2-5^2}+\dfrac{d^2}{4^2-7^2}=1$

$\dfrac{a^2}{6^2-1^2}+\dfrac{b^2}{6^2-3^2}+\dfrac{c^2}{6^2-5^2}+\dfrac{d^2}{6^2-7^2}=1$

$\dfrac{a^2}{8^2-1^2}+\dfrac{b^2}{8^2-3^2}+\dfrac{c^2}{8^2-5^2}+\dfrac{d^2}{8^2-7^2}=1$
 
Mathematics news on Phys.org
anemone said:
Evaluate $a^2+b^2+c^2+d^2$ if

$\dfrac{a^2}{2^2-1^2}+\dfrac{b^2}{2^2-3^2}+\dfrac{c^2}{2^2-5^2}+\dfrac{d^2}{2^2-7^2}=1$

$\dfrac{a^2}{4^2-1^2}+\dfrac{b^2}{4^2-3^2}+\dfrac{c^2}{4^2-5^2}+\dfrac{d^2}{4^2-7^2}=1$

$\dfrac{a^2}{6^2-1^2}+\dfrac{b^2}{6^2-3^2}+\dfrac{c^2}{6^2-5^2}+\dfrac{d^2}{6^2-7^2}=1$

$\dfrac{a^2}{8^2-1^2}+\dfrac{b^2}{8^2-3^2}+\dfrac{c^2}{8^2-5^2}+\dfrac{d^2}{8^2-7^2}=1$
[sp]Let $f(x) = \dfrac{a^2}{x-1^2} + \dfrac{b^2}{x-3^2} + \dfrac{c^2}{x-5^2} + \dfrac{d^2}{x-7^2}$. Then $f(x) = 1$ when $x = 2^2, 4^2,6^2$ or $8^2$.

Multiplying through by $(x-1^2)(x-3^2)(x-5^2)(x-7^2)$, the equation $f(x) = 1$ becomes $$\begin{aligned} a^2(x-3^2)(x-5^2)(x-7^2) &+ b^2(x-1^2)(x-5^2)(x-7^2) + c^2(x-1^2)(x-3^2)(x-7^2) + d^2(x-1^2)(x-3^2)(x-5^2) \\&= (x-1^2)(x-3^2)(x-5^2)(x-7^2).\end{aligned}$$ That is a quartic equation, whose first two terms are $$x^4 - (a^2 + b^2 + c^2 + d^2 + 1^2 + 3^2 + 5^2 + 7^2)x^3 + \ldots = 0.$$ The sum of the roots of that equation is $a^2 + b^2 + c^2 + d^2 + 1^2 + 3^2 + 5^2 + 7^2.$ But the four roots are $2^2, 4^2,6^2$ and $8^2$. Therefore $$a^2 + b^2 + c^2 + d^2 + (1^2 + 3^2 + 5^2 + 7^2) = 2^2 + 4^2 + 6^2 + 8^2,$$ and so $$a^2 + b^2 + c^2 + d^2 = (2^2 - 1^2) + (4^2 - 3^2) + (6^2 - 5^2) + (8^2 - 7^2) = 3 + 7 + 11 + 15 = 36.$$[/sp]
 
Very well done, Opalg and thanks for participating! (Smile)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top