- #1
skate_nerd
- 176
- 0
I've done this problem and I have a feeling it's incorrect. I've never done a problem like this so I am kind of confused on how else to go about doing it. The goal is to change the cartesian integral
$$\int_{-a}^{a}\int_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}}\,dy\,dx$$
into an integral in polar coordinates and then evaluate it.
Changing to polar coordinates I got the integral
$$\int_{0}^{\pi}\int_{-a}^{a}r\,dr\,d\theta$$
and evaluating this integral I ended up with an integrand of 0 to integrate with respect to \(d\theta\) and I wasn't entirely sure how to integrate that so I thought it might just be \(\pi\).
I really feel like there's no way that answer could be correct, seeing as the integral is of half a circle with radius \(a\) and the answer has nothing to do with \(a\). If someone could let me know where I went wrong that would be great.
$$\int_{-a}^{a}\int_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}}\,dy\,dx$$
into an integral in polar coordinates and then evaluate it.
Changing to polar coordinates I got the integral
$$\int_{0}^{\pi}\int_{-a}^{a}r\,dr\,d\theta$$
and evaluating this integral I ended up with an integrand of 0 to integrate with respect to \(d\theta\) and I wasn't entirely sure how to integrate that so I thought it might just be \(\pi\).
I really feel like there's no way that answer could be correct, seeing as the integral is of half a circle with radius \(a\) and the answer has nothing to do with \(a\). If someone could let me know where I went wrong that would be great.