- #1
tmt1
- 234
- 0
We are starting sequences, and in one of the examples we have this limit:
$$\lim_{{n}\to{\infty}} \frac{R^n}{n!}$$
We let $M$ equal a non-negative integer such that $ M \le R < M + 1$
I don't get the following step:
For $n > M$, we write $Rn/n!$ as a product of n factors:
$$\frac{R^n}{n!} = (\frac{R}{1} \frac{R}{2} ... \frac{R}{M}) (\frac{R}{M + 1}) (\frac{R}{M + 2}) ... (\frac{R}{n}) \le C(\frac{R}{n})$$
$$\lim_{{n}\to{\infty}} \frac{R^n}{n!}$$
We let $M$ equal a non-negative integer such that $ M \le R < M + 1$
I don't get the following step:
For $n > M$, we write $Rn/n!$ as a product of n factors:
$$\frac{R^n}{n!} = (\frac{R}{1} \frac{R}{2} ... \frac{R}{M}) (\frac{R}{M + 1}) (\frac{R}{M + 2}) ... (\frac{R}{n}) \le C(\frac{R}{n})$$