- #1
Amad27
- 412
- 1
Hello,
I am evaluating:
$$\int_{0}^{\infty} \frac{\log^2(x)}{x^2 + 1} dx$$
Using the following contour:
View attachment 3742
$R$ is the big radius, $\epsilon$ is small radius (of small circle)
Question before: Which $\log$ branch is this? I asked else they said,
$$-\pi/2 \le arg(z) \le 3\pi/2$$
But in the contour it is: $0 \le \theta \le \pi$ isn't it?
The pole is:
$z = \pm i$, but the one in the contour is $z = i$
$$\text{Res}_{z = i} = \lim_{z = i} \frac{\log^2(z)}{z+i} = \frac{\log^2(i)}{2i}$$
$$\log(z) = \log|z| + iarg(z) \implies \log(i) = \pi(i)/2 \implies \log^2(i) = -\frac{\pi^2}{4}$$
$$\text{Res}_{z = i} = \lim_{z = i} \frac{\log^2(z)}{z+i} = \frac{-\pi^2}{8i}$$
$$\oint_{C} f(z)dz = (2\pi i) \cdot \frac{\pi^2}{8i} = \frac{-\pi^3}{4}$$
Evaluation of $\Gamma_1$:
$$\oint_{\Gamma_1} f(z) dz = \int_{\epsilon}^{R} \frac{\log^2(x)}{x^2 + 1} dx$$
We will take $\epsilon \to 0$ and $R \to \infty$ later down the road.
Evaluation of $\Gamma_2$:
Using $z = Re^{i\theta}$ The denominator $z$'s are there for a reason.
$$\oint_{\Gamma_2} f(z) dz = \int_{0}^{\pi} \frac{\left( \log(R) + i\theta \right )^2 iRe^{i\theta} d\theta}{z)^2 + 1} $$
$$\left | \int_{0}^{\pi} \frac{\left( \log(R) + i\theta \right )^2 iRe^{i\theta} d\theta}{(Re^{i\theta})^2 + 1} \right | \le \int_{0}^{\pi} \frac{(R)\cdot \left | \log(R) + i\theta \right |^2}{\left | (z)^2 + 1 \right |} d\theta$$
$$|\log(R) + i\theta|^2 = \log^2(R) - \theta^2 \le \log^2(R)$$
$$|z^2 + 1| \ge |z|^2 - 1 \implies |z^2 + 1| \ge R^2 - 1$$
Then:
$$\frac{1}{|z^2 + 1|} \le \frac{1}{R^2 - 1}$$
The M-L inequality states:
$$\left | \int \right | \le ML(\Gamma)$$
Estimation lemma - Wikipedia, the free encyclopedia
So $M = \max(|f(z)|)$
$$|f(z)| \le \frac{\log^2(R)}{R^2 - 1}$$
$$L(\Gamma_2) = (1/2)(2\pi R) =\pi R $$
$$\left | \int \right | \le ML(\Gamma)$$
Therefore:
$$\left | \int \right | \le \frac{\log^2(R)\cdot\pi R}{R^2 - 1}$$
$$\lim_{R \to \infty} \left | \int f(z) dz \right | \le \lim_{R \to \infty} \int |f(z) dz| \le \lim_{R \to \infty} \frac{\log^2(R)\cdot\pi R}{R^2 - 1} = 0$$
So $\displaystyle \oint_{\Gamma_2} f(z) dz = 0$
Question: But how do I find the ACTUAL max $M$?? Was that the ABSOLUTE max? The absolute max is the criteria. Help?
Evaluation of $\Gamma_3$:
$$\oint_{\Gamma_3} f(z) dz = \int_{-R}^{-\epsilon} f(x) dx$$
Again, we will take limits, $\epsilon \to 0$ and $R \to \infty$ soon.
Evaluation of $\Gamma_4$:
$$\oint_{\Gamma_4} f(z) dz = \int_{\pi}^{0} \frac{\left( \log(\epsilon) + i\theta \right)^2 i\epsilon e^{i\theta}}{(\epsilon e^{i\theta})^2 + 1} d\theta$$
$$\left | \oint_{\Gamma_4} f(z) dz \right | \le \int_{0}^{\pi} \left | \frac{\left( \log(\epsilon) + i\theta \right)^2 i\epsilon e^{i\theta}}{(\epsilon e^{i\theta})^2 + 1} \right | d\theta $$
$$( \epsilon) \cdot \int_{0}^{\pi} \left | \frac{\left( \log(\epsilon) + i\theta \right)^2}{(\epsilon e^{i\theta})^2 + 1} \right | d\theta $$
$$\left | \left ( \log(\epsilon) + i\theta \right) \right |^2 = \log^2(\epsilon) - \theta^2 \le \log^2(\epsilon) $$
$$|z^2 + 1| \ge \epsilon^2 - 1$$
$$\therefore \frac{1}{|z^2 + 1|} \le \frac{1}{\epsilon^2 - 1}$$
$$|f(z)| \le \frac{\log^2(\epsilon)}{\epsilon^2 - 1} \le M$$
$$L(\Gamma_{4}) = (1/2)(2)(\pi \epsilon) = \pi \epsilon$$
$$\therefore ML(\Gamma) = \frac{\log^2{\epsilon}\pi\epsilon}{\epsilon^2 - 1}$$
$$\left | \oint f(z) dz \right | \le \int |f(z)| dz \le \frac{\log^2(\epsilon)\pi \epsilon}{\epsilon^2 - 1}$$
$$\lim_{epsilon \to 0} \left | \oint f(z) dz \right | \le \lim_{epsilon \to 0} \int |f(z)| dz \le \lim_{epsilon \to 0} \frac{\log^2(\epsilon)\pi \epsilon}{\epsilon^2 - 1}$$So:
$$\oint_{C} = \int_{\epsilon}^{R} \frac{\log^2(x)}{x^2 + 1} dx + \int_{0}^{\pi} \frac{\left( \log(R) + i\theta \right )^2 iRe^{i\theta} d\theta}{z)^2 + 1} + \int_{-R}^{-\epsilon} \frac{\log^2(x)}{x^2 + 1} dx + \int_{\pi}^{0} \frac{\left( \log(\epsilon) + i\theta \right)^2 i\epsilon e^{i\theta}}{(\epsilon e^{i\theta})^2 + 1} d\theta$$
$$\lim{R \to \infty}_{\epsilon \to 0} \oint_{C} = \int_{0}^{\infty} \frac{\log^2(x)}{x^2 + 1} dx + \int_{0}^{\infty} \frac{\log^2(-x)}{x^2 + 1} dx = \frac{-\pi^3}{4}$$
Therefore,
$$ \int_{0}^{\infty} \frac{\log^2(x)}{x^2 + 1} dx + \int_{0}^{\infty} \frac{\log^2(-x)}{x^2 + 1} dx = \frac{-\pi^3}{4}$$
Then we use $\log(z) = \log(|z|) + iarg(z)$ to get the required integral.
Can you just check the proofs for the integrals converging to $0$?
I am evaluating:
$$\int_{0}^{\infty} \frac{\log^2(x)}{x^2 + 1} dx$$
Using the following contour:
View attachment 3742
$R$ is the big radius, $\epsilon$ is small radius (of small circle)
Question before: Which $\log$ branch is this? I asked else they said,
$$-\pi/2 \le arg(z) \le 3\pi/2$$
But in the contour it is: $0 \le \theta \le \pi$ isn't it?
The pole is:
$z = \pm i$, but the one in the contour is $z = i$
$$\text{Res}_{z = i} = \lim_{z = i} \frac{\log^2(z)}{z+i} = \frac{\log^2(i)}{2i}$$
$$\log(z) = \log|z| + iarg(z) \implies \log(i) = \pi(i)/2 \implies \log^2(i) = -\frac{\pi^2}{4}$$
$$\text{Res}_{z = i} = \lim_{z = i} \frac{\log^2(z)}{z+i} = \frac{-\pi^2}{8i}$$
$$\oint_{C} f(z)dz = (2\pi i) \cdot \frac{\pi^2}{8i} = \frac{-\pi^3}{4}$$
Evaluation of $\Gamma_1$:
$$\oint_{\Gamma_1} f(z) dz = \int_{\epsilon}^{R} \frac{\log^2(x)}{x^2 + 1} dx$$
We will take $\epsilon \to 0$ and $R \to \infty$ later down the road.
Evaluation of $\Gamma_2$:
Using $z = Re^{i\theta}$ The denominator $z$'s are there for a reason.
$$\oint_{\Gamma_2} f(z) dz = \int_{0}^{\pi} \frac{\left( \log(R) + i\theta \right )^2 iRe^{i\theta} d\theta}{z)^2 + 1} $$
$$\left | \int_{0}^{\pi} \frac{\left( \log(R) + i\theta \right )^2 iRe^{i\theta} d\theta}{(Re^{i\theta})^2 + 1} \right | \le \int_{0}^{\pi} \frac{(R)\cdot \left | \log(R) + i\theta \right |^2}{\left | (z)^2 + 1 \right |} d\theta$$
$$|\log(R) + i\theta|^2 = \log^2(R) - \theta^2 \le \log^2(R)$$
$$|z^2 + 1| \ge |z|^2 - 1 \implies |z^2 + 1| \ge R^2 - 1$$
Then:
$$\frac{1}{|z^2 + 1|} \le \frac{1}{R^2 - 1}$$
The M-L inequality states:
$$\left | \int \right | \le ML(\Gamma)$$
Estimation lemma - Wikipedia, the free encyclopedia
So $M = \max(|f(z)|)$
$$|f(z)| \le \frac{\log^2(R)}{R^2 - 1}$$
$$L(\Gamma_2) = (1/2)(2\pi R) =\pi R $$
$$\left | \int \right | \le ML(\Gamma)$$
Therefore:
$$\left | \int \right | \le \frac{\log^2(R)\cdot\pi R}{R^2 - 1}$$
$$\lim_{R \to \infty} \left | \int f(z) dz \right | \le \lim_{R \to \infty} \int |f(z) dz| \le \lim_{R \to \infty} \frac{\log^2(R)\cdot\pi R}{R^2 - 1} = 0$$
So $\displaystyle \oint_{\Gamma_2} f(z) dz = 0$
Question: But how do I find the ACTUAL max $M$?? Was that the ABSOLUTE max? The absolute max is the criteria. Help?
Evaluation of $\Gamma_3$:
$$\oint_{\Gamma_3} f(z) dz = \int_{-R}^{-\epsilon} f(x) dx$$
Again, we will take limits, $\epsilon \to 0$ and $R \to \infty$ soon.
Evaluation of $\Gamma_4$:
$$\oint_{\Gamma_4} f(z) dz = \int_{\pi}^{0} \frac{\left( \log(\epsilon) + i\theta \right)^2 i\epsilon e^{i\theta}}{(\epsilon e^{i\theta})^2 + 1} d\theta$$
$$\left | \oint_{\Gamma_4} f(z) dz \right | \le \int_{0}^{\pi} \left | \frac{\left( \log(\epsilon) + i\theta \right)^2 i\epsilon e^{i\theta}}{(\epsilon e^{i\theta})^2 + 1} \right | d\theta $$
$$( \epsilon) \cdot \int_{0}^{\pi} \left | \frac{\left( \log(\epsilon) + i\theta \right)^2}{(\epsilon e^{i\theta})^2 + 1} \right | d\theta $$
$$\left | \left ( \log(\epsilon) + i\theta \right) \right |^2 = \log^2(\epsilon) - \theta^2 \le \log^2(\epsilon) $$
$$|z^2 + 1| \ge \epsilon^2 - 1$$
$$\therefore \frac{1}{|z^2 + 1|} \le \frac{1}{\epsilon^2 - 1}$$
$$|f(z)| \le \frac{\log^2(\epsilon)}{\epsilon^2 - 1} \le M$$
$$L(\Gamma_{4}) = (1/2)(2)(\pi \epsilon) = \pi \epsilon$$
$$\therefore ML(\Gamma) = \frac{\log^2{\epsilon}\pi\epsilon}{\epsilon^2 - 1}$$
$$\left | \oint f(z) dz \right | \le \int |f(z)| dz \le \frac{\log^2(\epsilon)\pi \epsilon}{\epsilon^2 - 1}$$
$$\lim_{epsilon \to 0} \left | \oint f(z) dz \right | \le \lim_{epsilon \to 0} \int |f(z)| dz \le \lim_{epsilon \to 0} \frac{\log^2(\epsilon)\pi \epsilon}{\epsilon^2 - 1}$$So:
$$\oint_{C} = \int_{\epsilon}^{R} \frac{\log^2(x)}{x^2 + 1} dx + \int_{0}^{\pi} \frac{\left( \log(R) + i\theta \right )^2 iRe^{i\theta} d\theta}{z)^2 + 1} + \int_{-R}^{-\epsilon} \frac{\log^2(x)}{x^2 + 1} dx + \int_{\pi}^{0} \frac{\left( \log(\epsilon) + i\theta \right)^2 i\epsilon e^{i\theta}}{(\epsilon e^{i\theta})^2 + 1} d\theta$$
$$\lim{R \to \infty}_{\epsilon \to 0} \oint_{C} = \int_{0}^{\infty} \frac{\log^2(x)}{x^2 + 1} dx + \int_{0}^{\infty} \frac{\log^2(-x)}{x^2 + 1} dx = \frac{-\pi^3}{4}$$
Therefore,
$$ \int_{0}^{\infty} \frac{\log^2(x)}{x^2 + 1} dx + \int_{0}^{\infty} \frac{\log^2(-x)}{x^2 + 1} dx = \frac{-\pi^3}{4}$$
Then we use $\log(z) = \log(|z|) + iarg(z)$ to get the required integral.
Can you just check the proofs for the integrals converging to $0$?
Attachments
Last edited: