- #1
polygamma
- 229
- 0
The typical way to evaluate $ \displaystyle \int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx$ is by contour integration.
In a recent thread I evaluated that integral using the Laplace transform.
http://mathhelpboards.com/analysis-50/advanced-integration-problem-9129.html#post42551My challenge question is to use the fact that $$ \frac{1}{a^{2}+x^{2}} = 2 \int_{0}^{\infty} t e^{-(a^{2}+x^{2}) t^{2}} \ dt $$ to show that
$$\int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx = \frac{\pi}{2a} e^{-am} .$$
In a recent thread I evaluated that integral using the Laplace transform.
http://mathhelpboards.com/analysis-50/advanced-integration-problem-9129.html#post42551My challenge question is to use the fact that $$ \frac{1}{a^{2}+x^{2}} = 2 \int_{0}^{\infty} t e^{-(a^{2}+x^{2}) t^{2}} \ dt $$ to show that
$$\int_{0}^{\infty} \frac{\cos mx}{a^{2}+x^{2}} \ dx = \frac{\pi}{2a} e^{-am} .$$
Last edited: