MHB Evaluating cos((1/2)arccos(x))

  • Thread starter Thread starter Elissa89
  • Start date Start date
AI Thread Summary
To evaluate cos((1/2)arccos(x)), it's important to recognize that 0 ≤ arccos(x) ≤ π, which implies 0 ≤ (1/2)arccos(x) ≤ (π/2), ensuring the cosine value is non-negative. The half-angle identity for cosine can be applied: cos²(θ/2) = (1 + cos(θ))/2. This leads to the conclusion that cos(θ/2) can be expressed as the square root of (1 + cos(θ))/2. The discussion emphasizes the need to apply these identities correctly to solve the problem.
Elissa89
Messages
52
Reaction score
0
I don't know how to solve this, we didn't really cover any problems like this in class

cos(1/2*cos^-1*x)

This is due tonight online and would like help please.
 
Last edited:
Mathematics news on Phys.org
Re: Need help, due tonight

The first thing I would consider is:

$$0\le\arccos(x)\le\pi$$

Hence:

$$0\le\frac{1}{2}\arccos(x)\le\frac{\pi}{2}$$

This means the cosine of the given angle will be non-negative. Next, consider the half-angle identity for cosine:

$$\cos^2\left(\frac{\theta}{2}\right)=\frac{1+\cos(\theta)}{2}$$

Given that the cosine function will be non-negative, we may write:

$$\cos\left(\frac{\theta}{2}\right)=\sqrt{\frac{1+\cos(\theta)}{2}}$$

Can you proceed?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top