- #1
happyparticle
- 465
- 21
- Homework Statement
- Evaluate ##\int_{-\infty}^{\infty} f(x)g(x) dx##
where ##f(x) = \cos (ax) , g(x) = e^{-c^2x^2}##
- Relevant Equations
- ##\int_{-\infty}^{\infty} \cos (ax) e^{-c^2x^2} dx##
Hi,
I have some question about evaluating a cosine function from ##-\infty## to ##\infty##.
I saw for a cosine function evaluate from ##-\infty## to ##\infty## I can change the limits from 0 to ##\infty##. I have a idea why, but I can't convince myself, furthermore, is it always the case no matter the cosine function?
Moreover, would it be appropriate to replace ##cos(ax)## for his complex equivalent, thus I will have only 2 exponentials function to deal with.
Thanks
I have some question about evaluating a cosine function from ##-\infty## to ##\infty##.
I saw for a cosine function evaluate from ##-\infty## to ##\infty## I can change the limits from 0 to ##\infty##. I have a idea why, but I can't convince myself, furthermore, is it always the case no matter the cosine function?
Moreover, would it be appropriate to replace ##cos(ax)## for his complex equivalent, thus I will have only 2 exponentials function to deal with.
Thanks