- #1
juantheron
- 247
- 1
Evaluation of $\displaystyle \int^{\frac{1}{2}}_{0}\frac{1}{(1-2x^2)\sqrt{1-x}}dx$
$\bf{Try::}$ Let $\displaystyle I = \int^{\frac{1}{2}}_{0}\frac{1}{(1-2x^2)\sqrt{1-x}}dx$ Put $1-x=t^2\;,$ Then $dx=-2tdt$
So $\displaystyle I = \int^{1}_{\frac{1}{2}}\frac{2t}{\left[1-2(1-t^2)^2\right]t}dt = -2\int^{1}_{\frac{1}{2}}\frac{1}{2t^4-4t^2+1}dt$
Now how can i proceed further, Help me
Thanks
$\bf{Try::}$ Let $\displaystyle I = \int^{\frac{1}{2}}_{0}\frac{1}{(1-2x^2)\sqrt{1-x}}dx$ Put $1-x=t^2\;,$ Then $dx=-2tdt$
So $\displaystyle I = \int^{1}_{\frac{1}{2}}\frac{2t}{\left[1-2(1-t^2)^2\right]t}dt = -2\int^{1}_{\frac{1}{2}}\frac{1}{2t^4-4t^2+1}dt$
Now how can i proceed further, Help me
Thanks