MHB Evaluating Definite Integrals with Floor Function

AI Thread Summary
The discussion focuses on evaluating the definite integrals of the floor functions of cotangent and cosine over the interval from 0 to π. The integral of the floor of cotangent, $$\int_{0}^{\pi}\lfloor \cot x \rfloor dx$$, is transformed into an improper integral leading to a telescopic sum, ultimately yielding a result of -π/2. The evaluation of $$\int_{0}^{\pi}\lfloor \cos x \rfloor dx$$ is also considered, though specific results for this integral are not detailed in the discussion. The use of limits and properties of the floor function is emphasized in the calculations. Overall, the thread provides insights into the methods for handling integrals involving the floor function.
juantheron
Messages
243
Reaction score
1
Evaluation of $$\displaystyle \int_{0}^{\pi}\lfloor \cot x \rfloor dx$$ and $$\displaystyle \int_{0}^{\pi}\lfloor \cos x \rfloor dx\;,$$ where $$\lfloor x \rfloor $$ denote Floor function of $$x$$
 
Mathematics news on Phys.org
jacks said:
Evaluation of $$\displaystyle \int_{0}^{\pi}\lfloor \cot x \rfloor dx$$ and $$\displaystyle \int_{0}^{\pi}\lfloor \cos x \rfloor dx\;,$$ where $$\lfloor x \rfloor $$ denote Floor function of $$x$$

[sp]By treating the integral as 'improper' You obtain a telescopic sum...

$\displaystyle \int_{0}^{\pi} \lfloor \cot x \rfloor dx = \int_{- \frac{\pi}{2}}^{\frac{\pi}{2}} \lfloor \tan x \rfloor dx = \lim_{n \rightarrow \infty} \tan^{-1} 0 - \tan^{-1} 1 + \tan^{-1} 1 - \tan^{-1} 2 + ... + \tan^{-1} (n-1) - \tan^{-1} n = - \frac{\pi}{2}$ [/sp]

Kind regards

$\chi$ $\sigma$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top