- #1
Joel Jacon
- 11
- 0
Evaluate $\displaystyle \lim_{{x}\to{2}} f(x$) if it exist where $f(x)$ = x - |x| where x<2;4 where x = 2;3x - 5 where x>2?
LHL
$\displaystyle \lim_{{x}\to{2}} f(2x)$ = 4
RHL
$\displaystyle \lim_{{x}\to{2}} f(3x - 5)$ = 1
Therefore the limit x tend to 2 for the function does not exist.
Have I done correctly? If not tell me what mistake I made?
LHL
$\displaystyle \lim_{{x}\to{2}} f(2x)$ = 4
RHL
$\displaystyle \lim_{{x}\to{2}} f(3x - 5)$ = 1
Therefore the limit x tend to 2 for the function does not exist.
Have I done correctly? If not tell me what mistake I made?