- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{205.q4.1}\\$
$\textsf{Evaluate the limit using L'Hospitals Rule }$
\begin{align}
\displaystyle
L_{q4}&=\lim_{{x}\to{1}} \frac{11x+11\sec(\pi x)}{4x-4{x}^{2}}
&L'H=\frac{f'}{g'}&= \frac{11+11\pi\sec(\pi x)\tan(\pi x)}{4-8x}
\\
&=\frac{11(1)+11\sec(\pi (1))}{4(1)+4(1)^2}
&&=\frac{11+11\pi\sec(\pi )\tan(\pi)}{4-8}
\\
&=\frac{11-11}{4-4}
&&=\frac{11+0}{-4}
\\
&=\frac{0}{0}
&&=-\frac{11}{4}
\end{align}
$\textsf{think this is ok, but sugestions??}$
$\textsf{Evaluate the limit using L'Hospitals Rule }$
\begin{align}
\displaystyle
L_{q4}&=\lim_{{x}\to{1}} \frac{11x+11\sec(\pi x)}{4x-4{x}^{2}}
&L'H=\frac{f'}{g'}&= \frac{11+11\pi\sec(\pi x)\tan(\pi x)}{4-8x}
\\
&=\frac{11(1)+11\sec(\pi (1))}{4(1)+4(1)^2}
&&=\frac{11+11\pi\sec(\pi )\tan(\pi)}{4-8}
\\
&=\frac{11-11}{4-4}
&&=\frac{11+0}{-4}
\\
&=\frac{0}{0}
&&=-\frac{11}{4}
\end{align}
$\textsf{think this is ok, but sugestions??}$