- #1
ultima9999
- 43
- 0
I have trouble with this limit evaluation due to the fractions in it.
[tex]\lim_{x \rightarrow 0} \left[3x^5cos\left(\frac{1}{x}\right)\right][/tex]
I assumed that [tex]cos\left(\frac{1}{0}\right) = \infty[/tex] so that limit gives [tex](0 \cdot \infty)[/tex] and is an indeterminate form. As such, I rearrange so that I can use L'Hopital's rule:
[tex]\lim_{x \rightarrow 0} \left[\frac{cos\left(\frac{1}{x}\right)}{\frac{1}{3x^5}}\right][/tex] this becomes [tex]\left(\frac{\infty}{\infty}\right)[/tex] and L'Hopital's rule applies.
[tex]\Rightarrow \lim_{x \rightarrow 0} \left[\frac{\frac{sin}{x^2}\left(\frac{1}{x}\right)}{-\frac{5}{3x^4}}\right][/tex]
Am I correct so far?
[tex]\lim_{x \rightarrow 0} \left[3x^5cos\left(\frac{1}{x}\right)\right][/tex]
I assumed that [tex]cos\left(\frac{1}{0}\right) = \infty[/tex] so that limit gives [tex](0 \cdot \infty)[/tex] and is an indeterminate form. As such, I rearrange so that I can use L'Hopital's rule:
[tex]\lim_{x \rightarrow 0} \left[\frac{cos\left(\frac{1}{x}\right)}{\frac{1}{3x^5}}\right][/tex] this becomes [tex]\left(\frac{\infty}{\infty}\right)[/tex] and L'Hopital's rule applies.
[tex]\Rightarrow \lim_{x \rightarrow 0} \left[\frac{\frac{sin}{x^2}\left(\frac{1}{x}\right)}{-\frac{5}{3x^4}}\right][/tex]
Am I correct so far?
Last edited: