- #1
Destrio
- 212
- 0
I have been given a series of limits to evaluate, where I can only know if I got 100% of them correct or not, as opposed to individually. So, I'm not sure which I have made a mistake on, so I will post all the limits and my work. Thanks
A)
lim x/|x|
x→ 0
limit does not exist
B)
lim [(x^2)-1]/(x-1)
x→ −1
=(1-1) / (-1-1) = 0/-2 = 0
c)
lim [(x^2)+4x−5]/[(x^2)+x−2]
x→ 1
= (x+5)(x-1)/(x+2)(x-1) = (x+5)/(x+2) = 6/3 = 2
d)
lim |x|
x→ 0
= 0
e)
lim [(2t^2)−3t−2]/[(t^2)+t−6]
t→ 2
= (2t+1)(t-2) / (t+3)(t-2) = (2t+1)/(t+3) = 5/5 = 1
f)
lim[(x^2)−2x+1]/[(x^2)−1]
x→ 1
= (x-1)(x-1) / (x-1)(x+1) = (x-1)/(x+1) = 0/2 = 0
g)
If f(x)=2x−7 find
lim (f(x+h)−f(x)) / h
h→ 0
=2(x+h)-7 - (2x-7) / h
= 2x + 2h -7 - 2x + 7 / h
= 2h / h = 2
h)
If f(x)=(2(x^2)+3x+5) find
lim (f(h)−f(0) )/ h
h→ 0
=2(h^2) + 3h +5 -5 / h
=h(2h+3) / h
=2h+3 = 3
i)
If f(x)=(−25) / (2x+3)
find
lim [f(1+h)−f(1)] / h
h→ 0
= (25/ 2(1+h) +3) - (25/ 2(1) + 3) /h
= (25/ 5+2h) - (5) / h
= (25/ 5+2h) - (5(5+2h))/(5+2h) /h
= (25-25-10h)/(5+2h) /h
= -10 / 5+2h
= -2
j)
lim [(x^2)+h] / [x+(h^2)]
h→ 0
= (x^2) / x
= x
Thanks
A)
lim x/|x|
x→ 0
limit does not exist
B)
lim [(x^2)-1]/(x-1)
x→ −1
=(1-1) / (-1-1) = 0/-2 = 0
c)
lim [(x^2)+4x−5]/[(x^2)+x−2]
x→ 1
= (x+5)(x-1)/(x+2)(x-1) = (x+5)/(x+2) = 6/3 = 2
d)
lim |x|
x→ 0
= 0
e)
lim [(2t^2)−3t−2]/[(t^2)+t−6]
t→ 2
= (2t+1)(t-2) / (t+3)(t-2) = (2t+1)/(t+3) = 5/5 = 1
f)
lim[(x^2)−2x+1]/[(x^2)−1]
x→ 1
= (x-1)(x-1) / (x-1)(x+1) = (x-1)/(x+1) = 0/2 = 0
g)
If f(x)=2x−7 find
lim (f(x+h)−f(x)) / h
h→ 0
=2(x+h)-7 - (2x-7) / h
= 2x + 2h -7 - 2x + 7 / h
= 2h / h = 2
h)
If f(x)=(2(x^2)+3x+5) find
lim (f(h)−f(0) )/ h
h→ 0
=2(h^2) + 3h +5 -5 / h
=h(2h+3) / h
=2h+3 = 3
i)
If f(x)=(−25) / (2x+3)
find
lim [f(1+h)−f(1)] / h
h→ 0
= (25/ 2(1+h) +3) - (25/ 2(1) + 3) /h
= (25/ 5+2h) - (5) / h
= (25/ 5+2h) - (5(5+2h))/(5+2h) /h
= (25-25-10h)/(5+2h) /h
= -10 / 5+2h
= -2
j)
lim [(x^2)+h] / [x+(h^2)]
h→ 0
= (x^2) / x
= x
Thanks