- #1
ognik
- 643
- 2
The book states that the integral of the (inner) product of 2 distinct eigenvectors must vanish if they are orthogonal.
Given $ P_1(x)=x, Q_0(x)= \frac{1}{2}\ln\left({\frac{1+x}{1-x}}\right) $ are solutions to Legendres eqtn., evaluate their orthog. integral.
Using $ ln(1-z)=-\sum_{n=0}^{\infty}\frac{1}{n} {z}^{n}, |z|< 1 $
$ \ln\left({1+x}\right)= \sum_{n=0}^{\infty}\frac{1}{n} {(-1)}^{n+1}\left(\frac{1}{x}\right)^{\!{n}} $
$ \ln\left({1-x}\right)= -\sum_{n=0}^{\infty}\frac{1}{n} \left(\frac{1}{x}\right)^{\!{n}} $
I got $ \ln\left({\frac{1+x}{1-x}}\right)=-\sum_{n=0}^{\infty}\frac{1}{n}\left(\frac{1}{x}\right)^{\!{n}} $
x is its own series, so $ \int_{-1}^{1} \frac{x}{2} \ln\left({\frac{1+x}{1-x}}\right) \,dx = - \int_{-1}^{1} \frac{x}{2}\sum_{n=0}^{\infty}\frac{1}{n}\left(\frac{1}{x}\right)^{\!{n}}\,dx =
- \frac{1}{2} \int_{-1}^{1} \sum_{n=0}^{\infty}\frac{1}{n}{x}^{-n+1}\,dx $
$ = - \frac{1}{2} \sum_{n=0}^{\infty}\frac{1}{2-{n}^{2}}{x}^{-n+2}|^{1}_{-1}
= \frac{1}{2} \sum_{n=0}^{\infty}\frac{1}{2-{n}^{2}} ({x}^{3}-x)$
I would appreciate confirmation all the above is correct?
So the orthogonal integral is not = 0, except for x=0, therefore the solutions are not orthogonal, the integral must =0 for all values in the interval.
Finding it = 0 at x=0 troubles me, is this significant in some way?
Given $ P_1(x)=x, Q_0(x)= \frac{1}{2}\ln\left({\frac{1+x}{1-x}}\right) $ are solutions to Legendres eqtn., evaluate their orthog. integral.
Using $ ln(1-z)=-\sum_{n=0}^{\infty}\frac{1}{n} {z}^{n}, |z|< 1 $
$ \ln\left({1+x}\right)= \sum_{n=0}^{\infty}\frac{1}{n} {(-1)}^{n+1}\left(\frac{1}{x}\right)^{\!{n}} $
$ \ln\left({1-x}\right)= -\sum_{n=0}^{\infty}\frac{1}{n} \left(\frac{1}{x}\right)^{\!{n}} $
I got $ \ln\left({\frac{1+x}{1-x}}\right)=-\sum_{n=0}^{\infty}\frac{1}{n}\left(\frac{1}{x}\right)^{\!{n}} $
x is its own series, so $ \int_{-1}^{1} \frac{x}{2} \ln\left({\frac{1+x}{1-x}}\right) \,dx = - \int_{-1}^{1} \frac{x}{2}\sum_{n=0}^{\infty}\frac{1}{n}\left(\frac{1}{x}\right)^{\!{n}}\,dx =
- \frac{1}{2} \int_{-1}^{1} \sum_{n=0}^{\infty}\frac{1}{n}{x}^{-n+1}\,dx $
$ = - \frac{1}{2} \sum_{n=0}^{\infty}\frac{1}{2-{n}^{2}}{x}^{-n+2}|^{1}_{-1}
= \frac{1}{2} \sum_{n=0}^{\infty}\frac{1}{2-{n}^{2}} ({x}^{3}-x)$
I would appreciate confirmation all the above is correct?
So the orthogonal integral is not = 0, except for x=0, therefore the solutions are not orthogonal, the integral must =0 for all values in the interval.
Finding it = 0 at x=0 troubles me, is this significant in some way?