Evaluating $\sum_{n=1}^\infty \frac{1}{2nx^{2n}}$

  • MHB
  • Thread starter Greg
  • Start date
In summary, we can evaluate the given infinite sum by using the Taylor series expansion of $\ln(1-t)$ with a substitution of $t = \dfrac1{x^2}$. This results in the sum being equal to $-\dfrac12\ln\Bigl(1-\dfrac1{x^2}\Bigr)$.
  • #1
Greg
Gold Member
MHB
1,378
0
Evaluate $$\sum_{n=1}^\infty\frac{1}{2nx^{2n}}$$
 
Mathematics news on Phys.org
  • #2
greg1313 said:
Evaluate $$\sum_{n=1}^\infty\frac{1}{2nx^{2n}}$$
[sp]Start with the Taylor series expansion $\ln(1-t) = -t - \dfrac{t^2}2 - \dfrac{t^3}3 - \ldots$ (valid when $|t|<1$).

Substitute $t = \dfrac1{x^2}$: $\ln\Bigl(1-\dfrac1{x^2}\Bigr) = -\dfrac1{x^2} - \dfrac1{2x^4} - \dfrac1{3x^6} - \ldots.$

Therefore \(\displaystyle -\dfrac12\ln\Bigl(1-\dfrac1{x^2}\Bigr) = \dfrac1{2x^2} + \dfrac1{4x^4} + \dfrac1{6x^6} + \ldots = \sum_{n=1}^\infty\frac{1}{2nx^{2n}}\) (the sum converging when $|x|>1$).

[/sp]
 
  • #3
greg1313 said:
Evaluate $$\sum_{n=1}^\infty\frac{1}{2nx^{2n}}$$
my solution:
let:
$S=(\dfrac{1}{2x^2}+\dfrac{1}{4x^4}+\dfrac{1}{6x^6}+-----+\dfrac{1}{2nx^{2n}}+---)\\
P=\dfrac{1}{2}(\dfrac{1}{x^2}+\dfrac{1}{x^4}+\dfrac{1}{x^6}+-----+\dfrac{1}{x^{2n}}+---)\\
Q=(\dfrac{1}{2^1x^2}+\dfrac{1}{2^2x^4}+\dfrac{1}{2^3x^6}+-----+\dfrac{1}{2^nx^{2n}}+---)$
$by \,\,"Alembert's \,\, ratio \,\,test" :$
$$\lim_{n\rightarrow \infty} \dfrac{a_{n+1}}{a_n}=\dfrac {1}{x^2}<1, or ,x^2>1$$
$\rightarrow \left | x \right |>1$ then $S$ converges
and $\left | x \right |<1,$ $S$ diverges
if $\left | x \right |=1$ then $S=\dfrac{1}{2}(\dfrac{1}{1}+\dfrac{1}{2}+--\dfrac{1}{n}+--)$ diverges
I will focus on $\left | x \right |>1,$and find the range of $S$
for:$Q<S<P$
By infinite geometric series it is easy to get:
$$\dfrac {1}{2x^2-1}<S=\sum_{n=1}^\infty\dfrac{1}{2nx^{2n}}<\dfrac {1}{2x^2-2}$$
 
Last edited:
  • #4
My solution:

Finding the limit via the derivative of the sum:

\[\frac{\mathrm{d} }{\mathrm{d} x}\sum_{n=1}^{\infty}\frac{1}{2n}x^{-2n}=-\frac{1}{x}\sum_{n=1}^{\infty}(x^{-2})^n = -\frac{1}{x}\left ( \sum_{n=0}^{\infty}(x^{-2})^n-1 \right ) \\\\ =^*-\frac{1}{x}\left (\frac{1}{1-x^{-2}}-1 \right )=-\frac{1}{x}\cdot \frac{1}{x^2-1} \\\\ \Rightarrow \sum_{n=1}^{\infty}\frac{1}{2n}x^{-2n} = -\int \frac{1}{x}\cdot \frac{1}{x^2-1}dx=^{**}-\frac{1}{2}\ln (1-x^{-2})\](*). The geometric sum converges $iff$ $x^{-2} < 1$ or $ |x| > 1$.
(**). Solving the integral:

\[-\int \frac{1}{x}\cdot \frac{1}{x^2-1}dx=-\int \frac{1}{x^3-x}dx = -\int \frac{x^{-3}}{1-x^{-2}}dx \]

Substitution with \[u = 1-x^{-2} \rightarrow -\frac{1}{2}du = -x^{-3}dx\], gives the result.
 
  • #5
lfdahl said:
My solution:

Finding the limit via the derivative of the sum:

\[\frac{\mathrm{d} }{\mathrm{d} x}\sum_{n=1}^{\infty}\frac{1}{2n}x^{-2n}=-\frac{1}{x}\sum_{n=1}^{\infty}(x^{-2})^n = -\frac{1}{x}\left ( \sum_{n=0}^{\infty}(x^{-2})^n-1 \right ) \\\\ =^*-\frac{1}{x}\left (\frac{1}{1-x^{-2}}-1 \right )=-\frac{1}{x}\cdot \frac{1}{x^2-1} \\\\ \Rightarrow \sum_{n=1}^{\infty}\frac{1}{2n}x^{-2n} = -\int \frac{1}{x}\cdot \frac{1}{x^2-1}dx=^{**}-\frac{1}{2}\ln (1-x^{-2})\](*). The geometric sum converges $iff$ $x^{-2} < 1$ or $ |x| > 1$.
(**). Solving the integral:

\[-\int \frac{1}{x}\cdot \frac{1}{x^2-1}dx=-\int \frac{1}{x^3-x}dx = -\int \frac{x^{-3}}{1-x^{-2}}dx \]

Substitution with \[u = 1-x^{-2} \rightarrow -\frac{1}{2}du = -x^{-3}dx\], gives the result.

fabulous!
 
  • #6
Albert said:
my solution:
let:
$S=(\dfrac{1}{2x^2}+\dfrac{1}{4x^4}+\dfrac{1}{6x^6}+-----+\dfrac{1}{2nx^{2n}}+---)\\
P=\dfrac{1}{2}(\dfrac{1}{x^2}+\dfrac{1}{x^4}+\dfrac{1}{x^6}+-----+\dfrac{1}{x^{2n}}+---)\\
Q=(\dfrac{1}{2^1x^2}+\dfrac{1}{2^2x^4}+\dfrac{1}{2^3x^6}+-----+\dfrac{1}{2^nx^{2n}}+---)$
$by \,\,"Alembert's \,\, ratio \,\,test" :$
$$\lim_{n\rightarrow \infty} \dfrac{a_{n+1}}{a_n}=\dfrac {1}{x^2}<1, or ,x^2>1$$
$\rightarrow \left | x \right |>1$ then $S$ converges
and $\left | x \right |<1,$ $S$ diverges
if $\left | x \right |=1$ then $S=\dfrac{1}{2}(\dfrac{1}{1}+\dfrac{1}{2}+--\dfrac{1}{n}+--)$ diverges
I will focus on $\left | x \right |>1,$and find the range of $S$
for:$Q<S<P$
By infinite geometric series it is easy to get:
$$\dfrac {1}{2x^2-1}<S=\sum_{n=1}^\infty\dfrac{1}{2nx^{2n}}<\dfrac {1}{2x^2-2}$$

Hi Albert. I don't see how the above provides a solution. Can you clarify?
 
  • #7
Albert said:
my solution:
let:
$S=(\dfrac{1}{2x^2}+\dfrac{1}{4x^4}+\dfrac{1}{6x^6}+-----+\dfrac{1}{2nx^{2n}}+---)$$by \,\,"Alembert's \,\, ratio \,\,test" :$
$$\lim_{n\rightarrow \infty} \dfrac{a_{n+1}}{a_n}=\dfrac {1}{x^2}<1, or ,x^2>1$$
$\rightarrow \left | x \right |>1$ then $S$ converges
and $\left | x \right |<1,$ $S$ diverges
if $\left | x \right |=1$ then $S=\dfrac{1}{2}(\dfrac{1}{1}+\dfrac{1}{2}+--\dfrac{1}{n}+--)$ diverges
I will focus on $\left | x \right |>1,$and find the range of $S$
for:$Q<S<P$
By infinite geometric series it is easy to get:
$$\dfrac {1}{2x^2-1}<S=\sum_{n=1}^\infty\dfrac{1}{2nx^{2n}}<\dfrac {1}{2x^2-2}$$
greg1313 said:
Hi Albert. I don't see how the above provides a solution. Can you clarify?
$S=(\dfrac{1}{2x^2}+\dfrac{1}{4x^4}+\dfrac{1}{6x^6}+-----+\dfrac{1}{2nx^{2n}}+---)$
$P=\dfrac{1}{2}(\dfrac{1}{x^2}+\dfrac{1}{x^4}+\dfrac{1}{x^6}+-----+\dfrac{1}{x^{2n}}+---)$
$Q=(\dfrac{1}{2^1x^2}+\dfrac{1}{2^2x^4}+\dfrac{1}{2^3x^6}+-----+\dfrac{1}{2^nx^{2n}}+---)$
$$\dfrac {1}{2x^2-1}<S=-\dfrac{1}{2}ln(1-\dfrac{1}{x^2})=\sum_{n=1}^\infty\dfrac{1}{2nx^{2n}}<\dfrac {1}{2x^2-2}$$
$( \left | x \right |>1)$
(from Opalg's solution):$S=-\dfrac{1}{2}ln(1-\dfrac{1}{x^2})$
$P,Q$ are two infinite geometric series with ratio $\dfrac {1}{x^2} $ and $\dfrac{1}{2x^2}$ repectively
Opalg already has given the answer , I only give the range of $S$ ,infact they are quite close
 
Last edited:
  • #8
Thanks for your participation. :)

My solution is effectively the same as lfdahl's, so I won't post it here.
 

FAQ: Evaluating $\sum_{n=1}^\infty \frac{1}{2nx^{2n}}$

What is the purpose of evaluating $\sum_{n=1}^\infty \frac{1}{2nx^{2n}}$?

The purpose of evaluating this infinite series is to determine its convergence or divergence. This information is important in various areas of mathematics and physics.

What is the formula for the general term of the series $\sum_{n=1}^\infty \frac{1}{2nx^{2n}}$?

The general term of this series is given by $\frac{1}{2nx^{2n}}$, where n is the index of summation.

What is the condition for convergence of the series $\sum_{n=1}^\infty \frac{1}{2nx^{2n}}$?

The series converges if the absolute value of the general term, $\frac{1}{2nx^{2n}}$, approaches 0 as n approaches infinity. This can be shown using the ratio test for convergence.

What is the value of x for which the series $\sum_{n=1}^\infty \frac{1}{2nx^{2n}}$ converges?

The series converges for all x values such that $|x| > 1$. This can be shown by taking the limit of the general term as n approaches infinity and using the fact that $|x| > 1$ implies $|\frac{1}{x}| < 1$.

What is the significance of the series $\sum_{n=1}^\infty \frac{1}{2nx^{2n}}$ in mathematics and physics?

This infinite series appears in various mathematical and physical problems, such as in the study of complex numbers, electrical engineering, and quantum mechanics. It also has connections to the Riemann zeta function and the distribution of primes.

Similar threads

Back
Top