MHB Evaluating the Limit of an Infinite Product

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $\displaystyle \lim_{{n}\to{\infty}} \prod_{k=3}^{n}\left(1-\tan^4\dfrac{\pi}{2^k}\right)$.
 
Mathematics news on Phys.org
Hint:

Think along the line of telescoping product...:)
 
My solution:
We begin by using the identity $\tan(x) = \frac{\sin(x)}{\cos(x)}$. Substituting and remembering that $1=\frac{\cos^4(x)}{\cos^4(x)}$, the product becomes
$$\prod_{k=3}^{\infty} \frac{\cos^4 \left ( \frac{\pi}{2^k} \right ) -\sin^4 \left ( \frac{\pi}{2^k} \right ) }{\cos^4 \left ( \frac{\pi}{2^k} \right ) }.$$
Factoring, recognizing that $\cos^2(x)+\sin^2(x)= 1$, and recognizing that $\cos^2(x)-\sin^2(x) = \cos(2x)$, we obtain
$$\prod_{k=3}^{\infty} \frac{\cos \left ( \frac{\pi}{2^{k-1}} \right ) }{\cos^4 \left ( \frac{\pi}{2^k} \right ) }.$$ Since $\prod ab = \prod a \prod b$, we can split $\cos^3$ out and leave behind a telescoping product. Multiplying this out, we find that all terms cancel except for $\cos \left (\frac{\pi}{4} \right ) = \frac{\sqrt{2}}{2}$. Now, using the fact that $\prod a^n = \left (\prod a \right )^n$, we obtain
$$\frac{\sqrt{2}}{2} \left (\prod_{k=3}^{\infty} \cos \left (\frac{\pi}{2^k} \right ) \right )^{-3}.$$ Multiplying and dividing by 2 inside the cosine (and forgetting about $\frac{\sqrt{2}}{2}$ and the power of -3 for now), we have
$$\prod_{k=3}^{\infty} \cos \left ( \frac{\frac{\pi}{2}}{2^{k-1}} \right ).$$
Shifting the index by one, we get
$$\prod_{k=2}^{\infty} \cos \left ( \frac{\frac{\pi}{2}}{2^{k}} \right ).$$ The product is now almost in the form of Viete’s formula,
$$ \prod_{k=1}^{\infty} \cos \left (\frac{\theta}{2^k} \right ) = \frac{\sin \theta}{\theta}.$$
However, our index starts from k=2, and not k=1, so we must first divide by $\cos \left ( \frac{\theta}{2} \right )$ to obtain
$$\prod_{k=2}^{\infty} \cos \left ( \frac{\theta}{2^k} \right ) = \frac{\sin \theta}{\theta \cos \left ( \frac{\theta}{2} \right )}.$$ Now, using the formula with $\theta = \frac{\pi}{2},$ we obtain
$$\frac{\sin \left ( \frac{\pi}{2} \right )}{\frac{\pi}{2} \cos \left ( \frac{\pi}{4} \right )} = \frac{4}{\pi \sqrt{2}}.$$
Putting it all together,
$$ \frac{\sqrt{2}}{2} \left ( \frac{4}{\pi \sqrt{2}} \right )^{-3} = \frac{\pi^3}{32}.$$
 
Last edited:
jacobi said:
My solution:
We begin by using the identity $\tan(x) = \frac{\sin(x)}{\cos(x)}$. Substituting and remembering that $1=\frac{\cos^4(x)}{\cos^4(x)}$, the product becomes
$$\prod_{k=3}^{\infty} \frac{\cos^4 \left ( \frac{\pi}{2^k} \right ) -\sin^4 \left ( \frac{\pi}{2^k} \right ) }{\cos^4 \left ( \frac{\pi}{2^k} \right ) }.$$
Factoring, recognizing that $\cos^2(x)+\sin^2(x)= 1$, and recognizing that $\cos^2(x)-\sin^2(x) = \cos(2x)$, we obtain
$$\prod_{k=3}^{\infty} \frac{\cos \left ( \frac{\pi}{2^{k-1}} \right ) }{\cos^4 \left ( \frac{\pi}{2^k} \right ) }.$$ Since $\prod ab = \prod a \prod b$, we can split $\cos^3$ out and leave behind a telescoping product. Multiplying this out, we find that all terms cancel except for $\cos \left (\frac{\pi}{4} \right ) = \frac{\sqrt{2}}{2}$. Now, using the fact that $\prod a^n = \left (\prod a \right )^n$, we obtain
$$\frac{\sqrt{2}}{2} \left (\prod_{k=3}^{\infty} \cos \left (\frac{\pi}{2^k} \right ) \right )^{-3}.$$ Multiplying and dividing by 2 inside the cosine (and forgetting about $\frac{\sqrt{2}}{2}$ and the power of -3 for now), we have
$$\prod_{k=3}^{\infty} \cos \left ( \frac{\frac{\pi}{2}}{2^{k-1}} \right ).$$
Shifting the index by one, we get
$$\prod_{k=2}^{\infty} \cos \left ( \frac{\frac{\pi}{2}}{2^{k}} \right ).$$ The product is now almost in the form of Viete’s formula,
$$ \prod_{k=1}^{\infty} \cos \left (\frac{\theta}{2^k} \right ) = \frac{\sin \theta}{\theta}.$$
However, our index starts from k=2, and not k=1, so we must first divide by $\cos \left ( \frac{\theta}{2} \right )$ to obtain
$$\prod_{k=2}^{\infty} \cos \left ( \frac{\theta}{2^k} \right ) = \frac{\sin \theta}{\theta \cos \left ( \frac{\theta}{2} \right )}.$$ Now, using the formula with $\theta = \frac{\pi}{2},$ we obtain
$$\frac{\sin \left ( \frac{\pi}{2} \right )}{\frac{\pi}{2} \cos \left ( \frac{\pi}{4} \right )} = \frac{4}{\pi \sqrt{2}}.$$
Putting it all together,
$$ \frac{\sqrt{2}}{2} \left ( \frac{4}{\pi \sqrt{2}} \right )^{-3} = \frac{\pi^3}{32}.$$

Hi jacobi,

Thanks for participating and also your so neat and great solution! :)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
3
Views
1K
Replies
2
Views
2K
Replies
2
Views
1K
Replies
2
Views
1K
Replies
8
Views
2K
Replies
4
Views
1K
Back
Top