- #1
Noah1
- 21
- 0
MarkFL said:To find the intersection(s) in the given interval, we may write:
\(\displaystyle \sin(x)=\cos(x)\)
Now, observing that \(\displaystyle \cos\left(\frac{\pi}{2}\right)=\cos\left(\frac{3\pi}{2}\right)=0\) and:
\(\displaystyle \cos\left(\frac{\pi}{2}\right)\ne\sin\left(\frac{\pi}{2}\right)\)
\(\displaystyle \cos\left(\frac{3\pi}{2}\right)\ne\sin\left(\frac{3\pi}{2}\right)\)
We may then divide though by $\cos(x)$ without losing any solutions on the given interval to get:
\(\displaystyle \tan(x)=1\)
And, given the periodicity of the tangent function and the quadrant I solution of \(\displaystyle x=\frac{\pi}{4}\), we may give the general solution as:
\(\displaystyle x=\frac{\pi}{4}+k\pi=\frac{\pi}{4}(4k+1)\) where $k\in\mathbb{Z}$
Now, along with the given interval and what we found at the endpoints, we may write:
\(\displaystyle \frac{\pi}{2}<\frac{\pi}{4}(4k+1)<\frac{3\pi}{2}\)
\(\displaystyle 2<4k+1<6\)
\(\displaystyle 1<4k<5\)
\(\displaystyle \frac{1}{4}<k<\frac{5}{4}\)
Hence (given that $k$ is an integer):
$k=1$
And so the intersection of the two functions occurs for:
\(\displaystyle x=\frac{\pi}{4}(4(1)+1)=\frac{5\pi}{4}\)
Now, observing that:
\(\displaystyle \sin\left(\frac{\pi}{2}\right)>\cos\left(\frac{\pi}{2}\right)\)
\(\displaystyle \sin\left(\frac{3\pi}{2}\right)<\cos\left(\frac{3\pi}{2}\right)\)
We may conclude:
\(\displaystyle \sin(x)>\cos(x)\) on \(\displaystyle \left[\frac{\pi}{2},\frac{5\pi}{4}\right)\)
\(\displaystyle \cos(x)>\sin(x)\) on \(\displaystyle \left(\frac{5\pi}{4},\frac{3\pi}{2}\right]\)
And so the area $A$ in question will be given by:
\(\displaystyle A=\int_{\frac{\pi}{2}}^{\frac{5\pi}{4}} \sin(x)-\cos(x)\,dx+\int_{\frac{5\pi}{4}}^{\frac{3\pi}{2}} \cos(x)-\sin(x)\,dx=(1+\sqrt{2})+(\sqrt{2}-1)=2\sqrt{2}\)
Is this question correct? We are given to evaluate:
\(\displaystyle \int_0^2 \left(e^x-e^{-x}\right)^2\,dx\)
\(\displaystyle 2\left(\frac{1}{2}\sinh(x)-x\right)\)
\(\displaystyle 2\left(\frac{1}{2}\sinh(2\cdot2)-2\right)-2\left(\frac{1}{2}\sinh(2\cdot0)-0\right)\)
\(\displaystyle \sinh(4)-4\)