- #1
juantheron
- 247
- 1
$\displaystyle \int_{0}^{\frac{\pi}{4}}\tan^{-1}\sqrt{\frac{\cos 2x }{2 \cos^2 x}}dx$$\bf{My\; Try::}$ Let $\displaystyle I = \int_{0}^{\frac{\pi}{4}}\tan^{-1}\sqrt{\frac{\cos 2x }{2\cos^2 x}}dx = \int_{0}^{\frac{\pi}{4}}\frac{\pi}{2}-\int_{0}^{\frac{\pi}{4}}\cot^{-1}\sqrt{\frac{\cos 2x}{2\cos^2 x}}dx$Using The formula $\displaystyle \tan^{-1}(x)+\cot^{-1}(x) = \frac{\pi}{2}\Rightarrow \tan^{-1}(x) = \frac{\pi}{2}-\cot^{-1}(x).$Now Let $\displaystyle J = \int_{0}^{\frac{\pi}{4}}\cot^{-1}\sqrt{\frac{\cos 2x}{2\cos^2 x}}dx = \int_{0}^{\frac{\pi}{4}}\cot^{-1}\sqrt{\frac{\cos^2 x-\sin^2 x}{2\cos^2 x}}dx = \int_{0}^{\frac{\pi}{4}}\cot^{-1}\sqrt{\frac{1}{2}-\frac{\tan^2 x}{2}}dx$Now How can i solve after thatThanks