- #1
juantheron
- 247
- 1
Calculation of \(\displaystyle \int\frac{\sqrt{\cos 2x}}{\sin x}dx\)
**My Try \(\displaystyle :: I = \int\frac{\sqrt{\cos 2x}}{\sin x}dx = \int\frac{\cos 2x}{\sin x\cdot \sqrt{\cos 2x}}\cdot \frac{\sin x}{\sin x}dx = \int\frac{\sqrt{2\cos^2 x-1}}{\left(1-\cos^2 x\right)\cdot \sqrt{2\cos^2 x-1}}\cdot \sin x dx\)Now Let \(\displaystyle \cos x = t\) and \(\displaystyle \sin xdx = -dt\)So Integral \(\displaystyle I = \int\frac{\left(2t^2-1\right)}{(t^2-1)\cdot \sqrt{2t^2-1}}dt\)
Now I did not Understand How can i proceed further.
Help me for solving above Question.
Thanks
**My Try \(\displaystyle :: I = \int\frac{\sqrt{\cos 2x}}{\sin x}dx = \int\frac{\cos 2x}{\sin x\cdot \sqrt{\cos 2x}}\cdot \frac{\sin x}{\sin x}dx = \int\frac{\sqrt{2\cos^2 x-1}}{\left(1-\cos^2 x\right)\cdot \sqrt{2\cos^2 x-1}}\cdot \sin x dx\)Now Let \(\displaystyle \cos x = t\) and \(\displaystyle \sin xdx = -dt\)So Integral \(\displaystyle I = \int\frac{\left(2t^2-1\right)}{(t^2-1)\cdot \sqrt{2t^2-1}}dt\)
Now I did not Understand How can i proceed further.
Help me for solving above Question.
Thanks