A Even with a whimsical mathematical usage, solutions are obtained!

AI Thread Summary
The discussion highlights the coherence of solutions derived from whimsical applications of real logarithm properties to complex logarithms, emphasizing that these properties hold true for analytic functions. It asserts that a real function is essentially a restriction of its complex counterpart, and two analytic functions can only be identical on the real line if they are identical overall. The term "analytical" is explored, noting its historical association with functions expressible as series. The conversation also touches on the equivalence of "analytical" and "holomorphic" in complex analysis, referencing the Cauchy-Riemann equations as a foundational definition. Overall, the thread underscores the interconnectedness of real and complex analysis in mathematical functions.
Z-10-46
Messages
1
Reaction score
0
TL;DR Summary
Even with a whimsical mathematical usage, coherent solutions are obtained!
Hello everyone,
logcomplexe 1.JPG

logcomplexe 2.JPG

Here, we observe that the familiar properties of the real logarithm hold true for the complex logarithm in these examples.

So why does a whimsical mathematical use of real logarithm properties yield coherent solutions even in the case of complex logarithm?
 

Attachments

  • Vitesse de la lumiere 1.JPG
    Vitesse de la lumiere 1.JPG
    55.9 KB · Views: 126
Mathematics news on Phys.org
As long as you are dealing with analytic functions, the real function is just a restriction of the complex analytic function. Two analytic functions can only be identical on the real line if they are identical.
 
  • Like
Likes PeroK and fresh_42
FactChecker said:
As long as you are dealing with analytic functions, the real function is just a restriction of the complex analytic function. Two analytic functions can only be identical on the real line if they are identical.
The term analytical is very interesting. It is reserved for functions that have an expression as a series. And that was how mathematicians regarded all functions for a long time, as series.
 
fresh_42 said:
The term analytical is very interesting. It is reserved for functions that have an expression as a series. And that was how mathematicians regarded all functions for a long time, as series.
When I studied complex analysis, "analytical" and "holomorphic" were assumed to mean more or less the same thing.
 
Svein said:
When I studied complex analysis, "analytical" and "holomorphic" were assumed to mean more or less the same thing.
Isn't that still the case?
 
fresh_42 said:
Isn't that still the case?
I certainly hope so. But the definition used to be "functions that satisfy the Cauchy-Riemann equations".
 
  • Like
Likes FactChecker
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top