- #1
Math100
- 809
- 227
- Homework Statement
- An integer is said to be square-free if it is not divisible by the square of any integer greater than ## 1 ##. Prove the following:
(b) Every integer ## n>1 ## is the product of a square-free integer and a perfect square.
[Hint: If ## n=p_{1}^{k_{1}} p_{2}^{k_{2}}\dotsb p_{s}^{k_{s}} ## is the canonical factorization of ## n ##, then write ## k_{i}=2q_{i}+r_{i} ## where ## r_{i}=0 ## or ## 1 ## according as ## k_{i} ## is even or odd.]
- Relevant Equations
- None.
Proof:
Suppose ## n>1 ## is a positive integer.
Let ## n=p_{1}^{k_{1}} p_{2}^{k_{2}}\dotsb p_{r}^{k_{r}} ## be the prime factorization of ## n ##
such that each ## k_{i} ## is a positive integer and ## p_{i}'s ## are prime for ## i=1,2,3,...,r ## with
## p_{1}<p_{2}<p_{3}<\dotsb <p_{r} ##.
Applying the Division Algorithm produces:
## k_{i}=2q_{i}+r_{i} ## for ## 0\leq r_{i}<2 ##,
where there exist unique integers ## q_{i} ## and ## r_{i} ##.
Since ## 0\leq r_{i}<2 ##,
it follows that ## k_{i}=2q_{i} ## or ## k_{i}=2q_{i}+1 ##.
Now we consider two cases.
Case #1: Suppose ## k_{i}=2q_{i} ##.
Then we have ## n=p_{1}^{k_{1}} p_{2}^{k_{2}}\dotsb p_{r}^{k_{r}} ##
## =p_{1}^{2q_{1}} p_{2}^{2q_{2}}\dotsb p_{r}^{2q_{r}} ##
## =(p_{1}^{q_{1}} p_{2}^{q_{2}}\dotsb p_{r}^{q_{r}})^2 ##
## =1\cdot (p_{1}^{q_{1}} p_{2}^{q_{2}}\dotsb p_{r}^{q_{r}})^2 ##.
Thus, ## 1 ## is a square-free integer and ## (p_{1}^{q_{1}} p_{2}^{q_{2}}\dotsb p_{r}^{q_{r}})^2 ##
is a perfect square.
Case #2: Suppose ## k_{i}=2q_{i}+1 ##.
Then we have ## n=p_{1}^{k_{1}} p_{2}^{k_{2}}\dotsb p_{r}^{k_{r}} ##
## =p_{1}^{2q_{1}+1} p_{2}^{2q_{2}+1}\dotsb p_{r}^{2q_{r}+1} ##
## =(p_{1} p_{2}\dotsb p_{r})(p_{1}^{2q_{1}} p_{2}^{2q_{2}}\dotsb p_{r}^{2q_{r}}) ##
## =(p_{1} p_{2}\dotsb p_{r})(p_{1}^{q_{1}} p_{2}^{q_{2}}\dotsb p_{r}^{q_{r}})^2 ##.
Thus, ## p_{1} p_{2}\dotsb p_{r} ## is a square-free integer and ## (p_{1}^{q_{1}} p_{2}^{q_{2}}\dotsb p_{r}^{q_{r}})^2 ##
is a perfect square.
Therefore, every integer ## n>1 ## is the product of a square-free integer and a perfect square.
Suppose ## n>1 ## is a positive integer.
Let ## n=p_{1}^{k_{1}} p_{2}^{k_{2}}\dotsb p_{r}^{k_{r}} ## be the prime factorization of ## n ##
such that each ## k_{i} ## is a positive integer and ## p_{i}'s ## are prime for ## i=1,2,3,...,r ## with
## p_{1}<p_{2}<p_{3}<\dotsb <p_{r} ##.
Applying the Division Algorithm produces:
## k_{i}=2q_{i}+r_{i} ## for ## 0\leq r_{i}<2 ##,
where there exist unique integers ## q_{i} ## and ## r_{i} ##.
Since ## 0\leq r_{i}<2 ##,
it follows that ## k_{i}=2q_{i} ## or ## k_{i}=2q_{i}+1 ##.
Now we consider two cases.
Case #1: Suppose ## k_{i}=2q_{i} ##.
Then we have ## n=p_{1}^{k_{1}} p_{2}^{k_{2}}\dotsb p_{r}^{k_{r}} ##
## =p_{1}^{2q_{1}} p_{2}^{2q_{2}}\dotsb p_{r}^{2q_{r}} ##
## =(p_{1}^{q_{1}} p_{2}^{q_{2}}\dotsb p_{r}^{q_{r}})^2 ##
## =1\cdot (p_{1}^{q_{1}} p_{2}^{q_{2}}\dotsb p_{r}^{q_{r}})^2 ##.
Thus, ## 1 ## is a square-free integer and ## (p_{1}^{q_{1}} p_{2}^{q_{2}}\dotsb p_{r}^{q_{r}})^2 ##
is a perfect square.
Case #2: Suppose ## k_{i}=2q_{i}+1 ##.
Then we have ## n=p_{1}^{k_{1}} p_{2}^{k_{2}}\dotsb p_{r}^{k_{r}} ##
## =p_{1}^{2q_{1}+1} p_{2}^{2q_{2}+1}\dotsb p_{r}^{2q_{r}+1} ##
## =(p_{1} p_{2}\dotsb p_{r})(p_{1}^{2q_{1}} p_{2}^{2q_{2}}\dotsb p_{r}^{2q_{r}}) ##
## =(p_{1} p_{2}\dotsb p_{r})(p_{1}^{q_{1}} p_{2}^{q_{2}}\dotsb p_{r}^{q_{r}})^2 ##.
Thus, ## p_{1} p_{2}\dotsb p_{r} ## is a square-free integer and ## (p_{1}^{q_{1}} p_{2}^{q_{2}}\dotsb p_{r}^{q_{r}})^2 ##
is a perfect square.
Therefore, every integer ## n>1 ## is the product of a square-free integer and a perfect square.