- #1
Guest2
- 193
- 0
Let $S = \left\{x_1, \ldots, x_k\right\}$ be independent set consisting of \(\displaystyle k\) elements in a linear space \(\displaystyle V\) and let $l(S)$ be the subspace spanned by $S$. Then every set of \(\displaystyle k+1\) elements in \(\displaystyle l(S)\) is dependent.
I've gotten nowhere with this - but I'm posting my attempt nonetheless if only for the sake showing effort.
Since \(\displaystyle S\) is independent there exist scalars $d_1, \ldots, d_k$ such that $$\sum_{1 \le i \le k}d_ix_i = 0 \implies d_1 = d_2 = \ldots = d_k ~~~~~~ (1)$$
Let $y_1, \ldots, y_{k+1} \in l(S)$, and let $c_1, \ldots, c_k$ be scalars not all zero. Then we can write:
$$\begin{align} & \begin{aligned} c_1y_1 & = \sum_{1 \le i \le k}a_{1, i} x_i, ~ c_2y_2 & = \sum_{1 \le i \le k}a_{2, i} x_i, ~ \ldots, ~ c_{k+1}y_{k+1} = \sum_{1 \le i \le k}a_{k+1, i}x_i \end{aligned} \end{align}$$
Where $a_{1, i}, \ldots, a_{k+1, i}$ are scalars not all zero. Therefore $$\displaystyle \sum_{1 \le i \le k+1}c_iy_i = \sum_{1 \le r \le k+1}\sum_{1 \le i \le k}a_{r,i}x_i ~~~~~~~~~~~ (2)$$
Now if $a_{r,i}$ are all zero, then $\displaystyle \sum_{1 \le i \le k}c_iy_i = 0$ and we're done.
If not, then it's too hard for me. I thought of letting letting $a_{1,i} = -d_1, ~ a_{2,i} = d_{2}, \ldots, a_{k, i} = (-1)^kd_k$ and finally $a_{k+1, i} = 0$ if $k$ is even, and $d_{k}$ if $k$ is odd. Then from $(1)$ and (2) we have $\displaystyle \sum_{1 \le i \le k+1}c_iy_i = \sum_{1 \le r \le k+1}\sum_{1 \le i \le k} (-1)^i d_i x_i$. But nothing cancels, as $x_1, \ldots, x_k$ are distinct.
I've gotten nowhere with this - but I'm posting my attempt nonetheless if only for the sake showing effort.
Since \(\displaystyle S\) is independent there exist scalars $d_1, \ldots, d_k$ such that $$\sum_{1 \le i \le k}d_ix_i = 0 \implies d_1 = d_2 = \ldots = d_k ~~~~~~ (1)$$
Let $y_1, \ldots, y_{k+1} \in l(S)$, and let $c_1, \ldots, c_k$ be scalars not all zero. Then we can write:
$$\begin{align} & \begin{aligned} c_1y_1 & = \sum_{1 \le i \le k}a_{1, i} x_i, ~ c_2y_2 & = \sum_{1 \le i \le k}a_{2, i} x_i, ~ \ldots, ~ c_{k+1}y_{k+1} = \sum_{1 \le i \le k}a_{k+1, i}x_i \end{aligned} \end{align}$$
Where $a_{1, i}, \ldots, a_{k+1, i}$ are scalars not all zero. Therefore $$\displaystyle \sum_{1 \le i \le k+1}c_iy_i = \sum_{1 \le r \le k+1}\sum_{1 \le i \le k}a_{r,i}x_i ~~~~~~~~~~~ (2)$$
Now if $a_{r,i}$ are all zero, then $\displaystyle \sum_{1 \le i \le k}c_iy_i = 0$ and we're done.
If not, then it's too hard for me. I thought of letting letting $a_{1,i} = -d_1, ~ a_{2,i} = d_{2}, \ldots, a_{k, i} = (-1)^kd_k$ and finally $a_{k+1, i} = 0$ if $k$ is even, and $d_{k}$ if $k$ is odd. Then from $(1)$ and (2) we have $\displaystyle \sum_{1 \le i \le k+1}c_iy_i = \sum_{1 \le r \le k+1}\sum_{1 \le i \le k} (-1)^i d_i x_i$. But nothing cancels, as $x_1, \ldots, x_k$ are distinct.
Last edited: