Evidence of an asteroid encountering a pulsar

In summary: What's left over, and that's what we see as a supernova remnant, is roughly 1.5 solar masses of these heavy nuclei, all of it moving at speeds of several percent the speed of light. The energy released by this process is equal to the mass lost times the square of the speed of light. So it's not a question of the shock wave from the supernova sweeping over a planet in the nearby solar system, it's from the heavy nuclei hitting the planet at speeds of several percent the speed of light. The energy released is roughly equal to a 10^44 Joule supernova, but the energy is focused into a much smaller area.The paper mentioned in the conversation is discussing the
  • #1
|Glitch|
429
117
Abstract

Debris disks and asteroid belts are expected to form around young pulsars due to fallback material from their original supernova explosions. Disk material may migrate inwards and interact with a pulsar’s magnetosphere, causing changes in torque and emission. Long term monitoring of PSR J0738−4042 reveals both effects. The pulse shape changes multiple times between 1988 and 2012. The torque, inferred via the derivative of the rotational period, changes abruptly from September 2005. This change is accompanied by an emergent radio component that drifts with respect to the rest of the pulse. No known intrinsic pulsar processes can explain these timing and radio emission signatures. The data lead us to postulate that we are witnessing an encounter with an asteroid or in-falling debris from a disk.

Source: arXiv : 1311.3541v1 [PDF]
The paper goes on to describe asteroids "formed from supernova fallback material" falling into the pulsar. Why would the asteroids be formed after the supernova? More importantly, how could an asteroid form from supernova remnants?

If a star with less than ~9 solar masses had planets and asteroids, then those planets and asteroids would still be there after the supernova. Supernova ejecta are charged particles traveling in excess of 10,000 km/s for Type I & II SNe (less than 8,000 km/s for Type Iax SNe). That may be sufficient to strip off layers of atmosphere from planets, but hardly capable of destroying rocky asteroids or planets. Naturally, a star that goes from 9 solar masses to less than 3 solar masses in just a second or two is going to dramatically change the orbits of any object in that solar system, but the supernova would not destroy those objects.

I do not doubt that the pulsar in question is being pelted by asteroids, as they claim. However, I do dispute that these asteroids were formed after the supernova. I think all planets and asteroids around neutron stars already existed before the star went supernova.

Planets and asteroids do not form directly from supernova remnants, there must be another trigger involved first. Such as another supernova blast from another star that compresses the extremely disbursed supernova remnant gases. Without that trigger the supernova remnants are too disbursed, and getting further disbursed as it continues to travel, to form anything solid.

Does anyone think it is possible for a supernova, without any outside influences to trigger a collapse of the supernova remnants, could form asteroids or planets after the supernova? If so, I would be interested in knowing how it would be possible.
 
Astronomy news on Phys.org
  • #2
The first rule of supernovae: it does not matter how you imagine them, they are much more violent.[1]

A typical supernova emits something like 1044 J. For an object at a distance of 1 AU, this corresponds to 4*1021 J/m^2. If you apply this to an object the size and mass of Earth (this would be inside the star, the numbers are just for illustration), you get 7 GJ/kg. Even Jupiter with its larger distance and mass would receive 100 MJ/kg. Asteroids have a larger surface to mass ratio than planets, so they get larger values than planets.

This is enough to completely vaporize everything, with some orders of magnitude as safety factor.
 
Last edited:
  • #3
mfb said:
The first rule of supernovae: it does not matter how you imagine them, they are much more violent.[1]

For some reason, everyone who quotes this rule, follows it up with an overstatement of supernova power.

A typical supernova emits something like 1044 J. For an object at a distance of 1 AU, this corresponds to 4*1021 J/m^2. If you apply this to an object the size and mass of Earth (this would be inside the star, the numbers are just for illustration), you get 7 GJ/kg. Even Jupiter with its larger distance and mass would receive 100 MJ/kg. Asteroids have a larger surface to mass ratio than planets, so they get larger values than planets.

This is enough to completely vaporize everything, with some orders of magnitude as safety factor.

The escape velocity at the surface of Jupiter is 59.5 km/sec. A kg at the surface of Jupiter needs 1/2 mv^2 = (1/2) (59.5*10^3)^2 = 1.7 GJ to escape. It should be clear that with only 100MJ/Kg of energy from the supernova, Jupiter can't evaporate.
 
  • #4
mfb said:
The first rule of supernovae: it does not matter how you imagine them, they are much more violent.[1]

A typical supernova emits something like 1044 J. For an object at a distance of 1 AU, this corresponds to 4*1021 J/m^2. If you apply this to an object the size and mass of Earth (this would be inside the star, the numbers are just for illustration), you get 7 GJ/kg. Even Jupiter with its larger distance and mass would receive 100 MJ/kg. Asteroids have a larger surface to mass ratio than planets, so they get larger values than planets.

This is enough to completely vaporize everything, with some orders of magnitude as safety factor.
I understand that supernovas are extremely powerful. I have also read where they produce 1044 Joules of energy. However, that is 1044 Joules of energy in absolutely every direction, while only a tiny fraction of that energy will be along the ecliptic where the planets form. You are placing the entire force of the supernova against a planet, and while that will assuredly destroy a planet, it simply is not possible to focus the entire supernova's energy into the direction of anyone planet.

7 x 109 Joules is not enough to vaporize Earth. A directed CME will impact Earth with as much as 6 x 1025 Joules of energy, and that barely disturbs the atmosphere.
 
Last edited:
  • #5
It's not so much the power radiated by the supernova, but what comes out of one. When the core collapses and the envelope surrounding it is blown off, additional nuclear reactions caused by the shock wave propagating thru the envelope create all sorts of heavy nuclei, starting with iron and nickel and proceeding to higher atomic numbers. Iron and nickel, at least based on samples of meteorites recovered on earth, are quite common materials with which to build an asteroid which has a chance of staying in one piece. Sure, this stuff will be hot thermally and radioactively, but 'vaporize' does not mean 'destroy'. This material will cool eventually. After all,

'We are star dust, we are golden, we are billion year old carbon ...'



Dude!
 
Last edited by a moderator:
  • #6
|Glitch| said:
I understand that supernovas are extremely powerful. I have also read where they produce 1044 Joules of energy. However, that is 1044 Joules of energy in absolutely every direction, while only a tiny fraction of that energy will be along the ecliptic where the planets form. You are placing the entire force of the supernova against a planet, and while that will assuredly destroy a planet, it simply is not possible to focus the entire supernova's energy into the direction of anyone planet.

7 x 109 Joules is not enough to vaporize Earth. A directed CME will impact Earth with as much as 6 x 1025 Joules of energy, and that barely disturbs the atmosphere.
You misunderstood mfb's calculations. He already took into account the dispersal of the total emitted energy by calculating the energy per square metre at the distance of 1AU. It's the 4*1021J/m2.
Multiply that by the cross-sectional area of Earth (~1013 square metres) and you end up with ~4*1034Joules of energy absorbed by Earth. The gravitational binding energy of Earth is ~2*1032Joules, so you have a good two orders of magnitude overkill there.

The 7GJ/kg is the energy received by every kilogram of Earth's mass.
 
  • #7
SteamKing said:
It's not so much the power radiated by the supernova, but what comes out of one. When the core collapses and the envelope surrounding it is blown off, additional nuclear reactions caused by the shock wave propagating thru the envelope create all sorts of heavy nuclei, starting with iron and nickel and proceeding to higher atomic numbers. Iron and nickel, at least based on samples of meteorites recovered on earth, are quite common materials with which to build an asteroid which has a chance of staying in one piece. Sure, this stuff will be hot thermally and radioactively, but 'vaporize' does not mean 'destroy'. This material will cool eventually. After all,

'We are star dust, we are golden, we are billion year old carbon ...'



Dude!

That is a very valid point that I had not considered. That is what really separates a CME from a supernova (besides the amount of energy of course). You are not going to get those heavy elements in a CME because it only consists of the hydrogen surface layer. In a supernova you have the entire iron core, and all those other elements heavier than iron traveling in excess of 10,000 km/s. That is going to do some serious damage.
 
Last edited by a moderator:
  • #8
Bandersnatch said:
You misunderstood mfb's calculations. He already took into account the dispersal of the total emitted energy by calculating the energy per square metre at the distance of 1AU. It's the 4*1021J/m2.
Multiply that by the cross-sectional area of Earth (~1013 square metres) and you end up with ~4*1034Joules of energy absorbed by Earth. The gravitational binding energy of Earth is ~2*1032Joules, so you have a good two orders of magnitude overkill there.

The 7GJ/kg is the energy received by every kilogram of Earth's mass.
I did indeed misunderstand. Thanks for the clarification.
 
  • #9
|Glitch| said:
That is a very valid point that I had not considered. That is what really separates a CME from a supernova (besides the amount of energy of course). You are not going to get those heavy elements in a CME because it only consists of the hydrogen surface layer. In a supernova you have the entire iron core, and all those other elements heavier than iron traveling in excess of 10,000 km/s. That is going to do some serious damage.

To be clear, the iron core in a supernova star stays at the center of the star while it collapses. Any iron which you would find in the remnants of the star after the stellar envelope has been ejected were produced by the reactions taking place outside of the core. When the core collapses, most of that iron is turned into the degenerate matter which forms the succeeding neutron star. It's not clear if any iron from the collapsing core is spun off into space when the core spins up due to conservation of angular momentum.
 
  • #10
willem2 said:
The escape velocity at the surface of Jupiter is 59.5 km/sec. A kg at the surface of Jupiter needs 1/2 mv^2 = (1/2) (59.5*10^3)^2 = 1.7 GJ to escape. It should be clear that with only 100MJ/Kg of energy from the supernova, Jupiter can't evaporate.
You are right, I got the powers of 10 wrong somehow.

The last parts need less energy than the first parts, but this does not help (~factor of 2):
2*1035 J hit an object with the same parameters as Jupiter, and its total gravitational binding energy is roughly 2*1036 J.

Anyway, asteroids are way smaller than Jupiter, so due to the cube/square-scalings there we have the overkill, even if we take into account that the 1044 J include neutrinos (?).
 
  • #11
mfb said:
You are right, I got the powers of 10 wrong somehow.

The last parts need less energy than the first parts, but this does not help (~factor of 2):
2*1035 J hit an object with the same parameters as Jupiter, and its total gravitational binding energy is roughly 2*1036 J.

Anyway, asteroids are way smaller than Jupiter, so due to the cube/square-scalings there we have the overkill, even if we take into account that the 1044 J include neutrinos (?).

Given that a stereotypical Type I or II SNe that generates 1044 Joules will pretty much destroy anything within 5 AUs. What do you think is the likelihood that supernova ejecta slowed down sufficiently while still in the solar system to reform into solid asteroids which then later fell back into the pulsar? Which is what the paper suggests.

Would it not be more likely that the objects destroyed by the SNe blast would be the debris falling into the pulsar?

I have always been under the impression that SNe ejecta will continue, for light years, until some external force (like another nearby SNe blast) causes the nebula gases to collapse.
 
  • #12
I don't know. I could imagine that objects far away (like our Kuiper belt or even the Oort cloud) could get influenced significantly, but without getting completely destroyed. If they get highly eccentric orbits, something interesting could happen.
 
  • #13
mfb said:
I don't know. I could imagine that objects far away (like our Kuiper belt or even the Oort cloud) could get influenced significantly, but without getting completely destroyed. If they get highly eccentric orbits, something interesting could happen.
Considering the star just underwent a sudden diet that shed ~6 solar masses, any object orbiting that star would have its orbit significantly disturbed. However, that does not explain the paper's assertion, that the SNe ejecta somehow managed to slow down enough while still within the solar system to form asteroids, which then later crashed back into the pulsar. Does that seem plausible to you?
 

FAQ: Evidence of an asteroid encountering a pulsar

What is an asteroid and a pulsar?

An asteroid is a small, rocky object that orbits the sun. A pulsar, on the other hand, is a highly magnetized, rotating neutron star that emits beams of electromagnetic radiation.

How could an asteroid encounter a pulsar?

An asteroid can encounter a pulsar if its orbit intersects with the pulsar's path, causing a collision.

What evidence suggests that an asteroid has encountered a pulsar?

Evidence of an asteroid encountering a pulsar can be seen through the detection of high-energy radiation and X-ray emissions, as well as changes in the pulsar's rotation rate and magnetic field.

Can an asteroid survive an encounter with a pulsar?

It is unlikely that an asteroid would survive an encounter with a pulsar, as the intense radiation and gravitational forces would likely destroy it.

How common are encounters between asteroids and pulsars?

Encounters between asteroids and pulsars are believed to be rare events, as the chances of their orbits intersecting are very low. However, they have been observed and studied by astronomers in the past.

Similar threads

Replies
1
Views
1K
Replies
10
Views
2K
Replies
5
Views
2K
Replies
14
Views
2K
Replies
12
Views
4K
Replies
1
Views
3K
Replies
51
Views
8K
Replies
21
Views
2K
Back
Top