- #1
Scott92
- 4
- 0
- TL;DR Summary
- Trying to determine whether the mass M in the kerr metric event horizon formula is the irreducible mass or the total mass-energy.
Posting this as I have so far not been able to find a straightforward answer to the following question. The formula for the outer event horizon of a kerr black hole is given by the following equation:
$$r_+ = \frac{GM}{c^2}\left(1+\sqrt{1-\frac{J^2c^2}{M^4G^2}}\right)$$
Where ##J## is the angular momentum of the black hole. My question is this: does the mass ##M## in this equation correspond to the irreducible mass of the black hole? Or does it correspond to the total mass equivalent of the black hole when the rotational mass-energy is included?
Mathematically speaking, does ##M = M_{irr}##? Or does ##M = \sqrt{M_{irr}^2 + \frac{J^2c^2}{4M_{irr}^2G^2}}##?
I should also stress that, despite my best efforts, I've yet to come across a textbook that answers this explicitly, with the distinction seemingly being taken for granted. Even when talking to others informally about this, there does not seem to be a consensus (there are already answers/comments stating opposing viewpoints in a Physics StackExchange thread that I made). So if anyone has an answer, a source would be greatly appreciated if possible, thanks!
$$r_+ = \frac{GM}{c^2}\left(1+\sqrt{1-\frac{J^2c^2}{M^4G^2}}\right)$$
Where ##J## is the angular momentum of the black hole. My question is this: does the mass ##M## in this equation correspond to the irreducible mass of the black hole? Or does it correspond to the total mass equivalent of the black hole when the rotational mass-energy is included?
Mathematically speaking, does ##M = M_{irr}##? Or does ##M = \sqrt{M_{irr}^2 + \frac{J^2c^2}{4M_{irr}^2G^2}}##?
I should also stress that, despite my best efforts, I've yet to come across a textbook that answers this explicitly, with the distinction seemingly being taken for granted. Even when talking to others informally about this, there does not seem to be a consensus (there are already answers/comments stating opposing viewpoints in a Physics StackExchange thread that I made). So if anyone has an answer, a source would be greatly appreciated if possible, thanks!