- #1
LagrangeEuler
- 717
- 20
Coherent states are eigen state of lowering operator ##a##
[tex]|\alpha\rangle=e ^{-\frac{|\alpha|^2}{2}}\sum^{\infty}_{n=0}\frac{\alpha^n}{\sqrt{n!}}|n \rangle [/tex], where ##\{|n \rangle\}## are eigenstates of energy operator. What is the case of state ##|0 \rangle##?
[tex]a|0 \rangle=0|0 \rangle=0.[/tex]
So, ##|0 \rangle## is eigenstate of lowering operator. But how to get that from
[tex]|\alpha\rangle=e ^{-\frac{|\alpha|^2}{2}}\sum^{\infty}_{n=0}\frac{\alpha^n}{\sqrt{n!}}|n \rangle ?[/tex]
[tex]|\alpha\rangle=e ^{-\frac{|\alpha|^2}{2}}\sum^{\infty}_{n=0}\frac{\alpha^n}{\sqrt{n!}}|n \rangle [/tex], where ##\{|n \rangle\}## are eigenstates of energy operator. What is the case of state ##|0 \rangle##?
[tex]a|0 \rangle=0|0 \rangle=0.[/tex]
So, ##|0 \rangle## is eigenstate of lowering operator. But how to get that from
[tex]|\alpha\rangle=e ^{-\frac{|\alpha|^2}{2}}\sum^{\infty}_{n=0}\frac{\alpha^n}{\sqrt{n!}}|n \rangle ?[/tex]