Example of Non-Square Relatively Prime Integers w/ Square Product

  • Thread starter Thread starter bobsmiters
  • Start date Start date
bobsmiters
12
0
If a and b are relatively prime integers whose product is a square, show by means of an example that a and b are not necessarily squares. If they are not squares, what are they?

Unless I read this question wrong I have not found and answer from 1 to 40... a little frustrated if anybody can help out.
 
Physics news on Phys.org
\mathbb{Z} = \{ 0,\, 1,\, \dots ,\, 40,\, 41\, \dots \}\ \mathbf{\cup \ \{-1,\, -2,\, \dots \}}

Start with the assumption that a and b are coprime integers whose product is square. What can you deduce about the prime factors of a and b? You should be able to deduce something almost like that a and b should both be square, but the fact that you're looking for integers will provide a loophole.
 
AKG said:
\mathbb{Z} = \{ 0,\, 1,\, \dots ,\, 40,\, 41\, \dots \}\ \mathbf{\cup \ \{-1,\, -2,\, \dots \}}
Start with the assumption that a and b are coprime integers whose product is square. What can you deduce about the prime factors of a and b? You should be able to deduce something almost like that a and b should both be square, but the fact that you're looking for integers will provide a loophole.
To clarify you must account for the fact that integers are both negative and positive. Remember that a square can not be negative, but that coprime factors can.
 
Back
Top