- #1
silverdiesel
- 65
- 0
My professor posed a brain teaser question today, and I can't get it out of my mind. I was hoping the forum can help me make sense of it.
Area under 1/x = infinity:
[tex]A = \int_{1}^{\infty} (1/x)dx[/tex]
[tex]A = \lim_{t\rightarrow \infty} \int_{1}^{t} (1/x)dx[/tex]
[tex]A = \lim_{t\rightarrow \infty} \ln t - \ln 1[/tex]
[tex]A = \infty[/tex]
but the volume of 1/x rotated around the x-axis is equal to pi
[tex]V = \pi \int_{1}^{\infty} (1/x)^2dx[/tex]
[tex]V = \pi \lim_{t\rightarrow \infty} \int_{1}^{t} (1/x)^2dx[/tex]
[tex]= \pi \lim_{t\rightarrow \infty} (-1/t + 1/1)[/tex]
[tex]= \pi (1)[/tex]
How can this be true?
Area under 1/x = infinity:
[tex]A = \int_{1}^{\infty} (1/x)dx[/tex]
[tex]A = \lim_{t\rightarrow \infty} \int_{1}^{t} (1/x)dx[/tex]
[tex]A = \lim_{t\rightarrow \infty} \ln t - \ln 1[/tex]
[tex]A = \infty[/tex]
but the volume of 1/x rotated around the x-axis is equal to pi
[tex]V = \pi \int_{1}^{\infty} (1/x)^2dx[/tex]
[tex]V = \pi \lim_{t\rightarrow \infty} \int_{1}^{t} (1/x)^2dx[/tex]
[tex]= \pi \lim_{t\rightarrow \infty} (-1/t + 1/1)[/tex]
[tex]= \pi (1)[/tex]
How can this be true?
Last edited: