- #1
toni07
- 25
- 0
Let n be a positive integer, and for each $j = 1,..., n$ define the polynomial $f_j(x)$ by f_j(x) = $\prod_{i=1,i \ne j}^n(x-a_i)$
The factor $x−a_j$ is omitted, so $f_j$ has degree n-1
a) Prove that the set $f_1(x),...,f_n(x)$ is a basis of the vector space of all polynomials of degree ≤ n - 1 in x with coefficients in F.
b) Let $b_1,...,b_n$ in F be arbitrary (not necessarily distinct). Prove that there exists a unique polynomial g(x) of degree ≤ n - 1 in x with coefficients in F.
I don't know how to go about this question. Any help would be appreciated.
The factor $x−a_j$ is omitted, so $f_j$ has degree n-1
a) Prove that the set $f_1(x),...,f_n(x)$ is a basis of the vector space of all polynomials of degree ≤ n - 1 in x with coefficients in F.
b) Let $b_1,...,b_n$ in F be arbitrary (not necessarily distinct). Prove that there exists a unique polynomial g(x) of degree ≤ n - 1 in x with coefficients in F.
I don't know how to go about this question. Any help would be appreciated.