Existential problem on Electromagnetism and the combination of Relativity and Quantum Mechanics

In summary, the existential problem in electromagnetism arises from the challenge of reconciling classical electromagnetic theory with the principles of relativity and quantum mechanics. Electromagnetism, governed by Maxwell's equations, describes the behavior of electric and magnetic fields, while relativity introduces constraints on the propagation of information and the nature of simultaneity. Quantum mechanics, on the other hand, introduces probabilistic elements and wave-particle duality, complicating the understanding of electromagnetic interactions at very small scales. The ongoing quest for a unified framework that seamlessly integrates these domains highlights fundamental issues, such as the incompatibility of quantum field theory with the classical interpretation of fields, prompting physicists to explore theories like quantum electrodynamics and string theory in search of resolution
  • #1
Hak
709
56
In Feynman's famous Physics book, in a discussion of the generality of Maxwell's equations in the static case, in which he addresses the problem of whether they are an approximation of a deeper mechanism that follows other equations or not, he says:
Strange enough, it happens that the combination of relativity and quantum mechanics, in the present form of these theories, seems to prohibit one from finding an equation that is fundamentally different from the Poisson equation and that does not at the same time lead to some kind of contradiction. Not a simple disagreement with experience, but an internal contradiction.
I was wondering first of all if this was a personal observation of Feynman's, or if it was a known thing that I will find in the future while studying and will somehow be pointed out to me in some Physics course. Then I was wondering if you could understand qualitatively what you are talking about, i.e., how does one theory ensure that there cannot be another different and more precise theory for the phenomena it describes...
 
Physics news on Phys.org
  • #2
Hak said:
In Feynman's famous Physics book
Which one?
 
  • #3
Vanadium 50 said:
Which one?
"The Feynman Lectures on Physics". Thanks.
 
  • #4
Jeez...this is going to be like pulling teeth. We've isolated it down to somewhere in three books.

Where does he say this? Seriously, how would you like to answer a question "Feynman says X...somewhere...explain it to me."
 
  • Like
Likes PhDeezNutz and topsquark
  • #5
Vanadium 50 said:
Where does he say this?
In the last paragraph of section 12-7 (The "underlying unity" of nature) of volume II.

Hak said:
I was wondering first of all if this was a personal observation of Feynman's, or if it was a known thing that I will find in the future while studying and will somehow be pointed out to me in some Physics course.
It is well known that quantum electrodynamics is not mathematically satisfactory. It is seen as an "effective" theory that is a very good approximation to some deeper theory.

Hak said:
Then I was wondering if you could understand qualitatively what you are talking about, i.e., how does one theory ensure that there cannot be another different and more precise theory for the phenomena it describes...
I think this is an overstatement. There can be no "proof" that a more precise theory cannot exist. There are many no-go theorems, but the proofs always depend on some innocent-looking assumption (which may turn out not to be satisfied in the real world). Nobody has yet constructed a mathematically clean quantum field theory in 3+1 dimensions for electrons with non-zero charge. It seems we are attacking the problem from a wrong angle.
 
  • #6
WernerQH said:
In the last paragraph of section 12-7 (The "underlying unity" of nature) of volume II.It is well known that quantum electrodynamics is not mathematically satisfactory. It is seen as an "effective" theory that is a very good approximation to some deeper theory.I think this is an overstatement. There can be no "proof" that a more precise theory cannot exist. There are many no-go theorems, but the proofs always depend on some innocent-looking assumption (which may turn out not to be satisfied in the real world). Nobody has yet constructed a mathematically clean quantum field theory in 3+1 dimensions for electrons with non-zero charge. It seems we are attacking the problem from a wrong angle.
Combining Quantum Mechanics and Relativity (especially General Relativity) I think we get to very, very, very complicated things. At this point, given your answer, I think Feynman's point is to be understood like this: people have tried for a long time to build theories that combine them and in all cases Poisson-style equations popped up somewhere, so there's no theory on the horizon that seems to work but doesn't have that kind of structure. What do you think?
 
  • #7
Feynman's statement is tautologically true. What does it mean to be "fundamentally different". If it is consistent, one can say, "well, it's different, but not fundamentally different."

The question is really A-level, but it appears from the context that Feynman is commenting that one cannot construct a gauge invariant theory of massive photons. Such a theory would not satisfy the Poisson equation. However, shortly after the lectures, it was shown how to do this by Peter Higgs and others, for which he and Francois Englert won the Nobel Prize.

The inconsistency that is mentioned above is called a "Landau Pole". It does not happen physically, as the unification of electromagnetism and the weak nuclear force happens well before that happens. Further, even if that did not happen, the energy scale is trillions of times larger than all the energy in the visible universe.

Finally, Feynman is not talking about GR.
 
  • Like
Likes dextercioby and PeroK
  • #8
Hak said:
Combining Quantum Mechanics and Relativity (especially General Relativity) I think we get to very, very, very complicated things.
In this context, Feynman is not concerned with gravity. We don't even have a consistent quantum electrodynamics in flat spacetime.

Hak said:
people have tried for a long time to build theories that combine them and in all cases Poisson-style equations popped up somewhere, so there's no theory on the horizon that seems to work but doesn't have that kind of structure.
Such equations emerge under very diverse circumstances, as Feynman demonstrates in that chapter. There's no problem with that. I believe the more "precise" (mathematically well-defined) quantum electrodynamics of the future will produce the same equations, but permit a better understanding of the theory. Feynman is concerned with apparent "internal contradictions" of the theory. Already the classical electron theory had the problem that a point charge would have infinite energy, and for a smeared out charge no consistent description could be found.

Maxwell's theory of the aether (the original electrodynamics) had similar "internal contradictions". The aether had to be solid (allowing transverse waves) and fluid (for vortex lines to form) at the same time. For years, physicists tried to construct mechanical models for such a medium. For Maxwell and his contemporaries it must have been self-evident that light waves cannot propagate without a medium carrying them. And that time is absolute and the same for all observers in the universe. After 1905 Maxwell's equations remained unchanged, but were seen in a new light. I believe there will be a similar change with quantum field theory, after we've jettisoned some "self-evident" metaphysical assumptions on what the theory is about.
 
  • #9
Thank you very much.
 
  • Like
Likes WernerQH

FAQ: Existential problem on Electromagnetism and the combination of Relativity and Quantum Mechanics

What is the main challenge in unifying electromagnetism with quantum mechanics and general relativity?

The primary challenge lies in the fundamental differences in how these theories describe nature. Electromagnetism and quantum mechanics are part of the Standard Model of particle physics, which operates under the framework of quantum field theory. General relativity, on the other hand, describes gravity as the curvature of spacetime, a classical field theory. The mathematical frameworks of these theories are currently incompatible, particularly at high energies or small scales where both quantum effects and gravitational effects become significant.

How does quantum electrodynamics (QED) reconcile quantum mechanics with electromagnetism?

Quantum Electrodynamics (QED) is a quantum field theory that describes how light and matter interact. It successfully merges the principles of quantum mechanics with the electromagnetic force by treating the electromagnetic field as quantized. In QED, photons are the force carriers of the electromagnetic force, and their interactions with charged particles like electrons are described using Feynman diagrams. This theory has been extremely successful in making precise predictions that have been confirmed by experiments.

Why is gravity difficult to quantize in the same way as electromagnetism?

Gravity is difficult to quantize because the gravitational force is much weaker than the other fundamental forces, and the mediator of gravity, the graviton, has not been observed. Additionally, general relativity describes gravity in terms of the curvature of spacetime, which complicates the formulation of a quantum theory. When attempting to apply quantum field theory to gravity, the resulting calculations lead to non-renormalizable infinities, making the theory mathematically inconsistent at high energies.

What are some proposed theories that aim to unify electromagnetism, quantum mechanics, and general relativity?

Several proposed theories aim to achieve this unification, with string theory and loop quantum gravity being among the most prominent. String theory suggests that the fundamental particles are not point-like but rather one-dimensional "strings" whose vibrations determine their properties. This framework naturally incorporates gravity and could potentially unify all fundamental forces. Loop quantum gravity, on the other hand, seeks to quantize spacetime itself, using a different approach based on the principles of general relativity and quantum mechanics.

What experimental evidence supports the need for a unified theory of electromagnetism, quantum mechanics, and general relativity?

While direct experimental evidence for a unified theory is currently lacking, several phenomena suggest the need for such a theory. For instance, the singularities at the centers of black holes and the conditions of the early universe (the Big Bang) are regions where both quantum effects and strong gravitational fields are significant. Observations of gravitational waves, the behavior of particles in high-energy collisions, and the anomalies in cosmic microwave background radiation also hint at physics beyond the Standard Model

Back
Top