- #1
Alphaboy2001
- 13
- 0
Exp Matrix to solve an initial value problem(urgent)
Given the matrix [tex]A = \left[\[\begin{array}{ccc} 2 & 2 \\ 1& 3 \end{array}\right][/tex]
a) Find the [tex]e^{tA}[/tex]
2) Solve the [tex]x' = Ax + (1,0) \begin{array}{c} \end{array}[/tex] where x(0) = (0,0)
a) [tex]e^{tA} = P_{A} \cdot e^{Dt} \cdot P'[/tex]
Which in my book gives
[tex]e^{tA} = \left[\[\begin{array}{ccc} -2 & 1 \\ 1& 1 \end{array}\right] \cdot \left[\[\begin{array}{ccc} e^{t} & 0 \\ 0& e^{16t} \end{array}\right] \cdot \left[\[\begin{array}{ccc} -\frac{1}{3} & \frac{1}{3} \\ \frac{4}{3}& \frac{8}{3} \end{array}\right] [/tex]
[tex]e^{tA} = \left[\[\begin{array}{ccc} \frac{2}{3}\cdot e^{t} + \frac{4}{3}\cdot e^{16t} & \frac{-2}{3}\cdot e^{t} + \frac{8}{3}\cdot e^{16t} \\ \frac{-1}{3}\cdot e^{t} + \frac{4}{3}\cdot e^{16t} & \frac{1}{3}\cdot e^{t} + \frac{8}{3}\cdot e^{16t} \end{array} \right][/tex]
Doesn't that look okay??
b) From what I remember the solution for x' can be written as [tex]X = e^{tA} \cdot C[/tex]
Which in my case gives [tex]X = e^{tA} \cdot \left[\begin{array}{c} 0 \\ 0 \end{array} \right][/tex]
This is how my textbook argues how solve such eqn, but if I fry to x' I totally different result. What am I doing wrong? Or could somebody please be so kind to lead me on the right path/track?? :)
Sincerely
Alphaboy
Homework Statement
Given the matrix [tex]A = \left[\[\begin{array}{ccc} 2 & 2 \\ 1& 3 \end{array}\right][/tex]
a) Find the [tex]e^{tA}[/tex]
2) Solve the [tex]x' = Ax + (1,0) \begin{array}{c} \end{array}[/tex] where x(0) = (0,0)
The Attempt at a Solution
a) [tex]e^{tA} = P_{A} \cdot e^{Dt} \cdot P'[/tex]
Which in my book gives
[tex]e^{tA} = \left[\[\begin{array}{ccc} -2 & 1 \\ 1& 1 \end{array}\right] \cdot \left[\[\begin{array}{ccc} e^{t} & 0 \\ 0& e^{16t} \end{array}\right] \cdot \left[\[\begin{array}{ccc} -\frac{1}{3} & \frac{1}{3} \\ \frac{4}{3}& \frac{8}{3} \end{array}\right] [/tex]
[tex]e^{tA} = \left[\[\begin{array}{ccc} \frac{2}{3}\cdot e^{t} + \frac{4}{3}\cdot e^{16t} & \frac{-2}{3}\cdot e^{t} + \frac{8}{3}\cdot e^{16t} \\ \frac{-1}{3}\cdot e^{t} + \frac{4}{3}\cdot e^{16t} & \frac{1}{3}\cdot e^{t} + \frac{8}{3}\cdot e^{16t} \end{array} \right][/tex]
Doesn't that look okay??
b) From what I remember the solution for x' can be written as [tex]X = e^{tA} \cdot C[/tex]
Which in my case gives [tex]X = e^{tA} \cdot \left[\begin{array}{c} 0 \\ 0 \end{array} \right][/tex]
This is how my textbook argues how solve such eqn, but if I fry to x' I totally different result. What am I doing wrong? Or could somebody please be so kind to lead me on the right path/track?? :)
Sincerely
Alphaboy
Last edited: