- #1
Anmoldeep
- 15
- 2
Thread moved from the technical forums to the schoolwork forums
An asteroid of mass M explodes into a spherical homogenous cloud in free space. Due to energy received by the explosion, the cloud expands and the expansion is spherically symmetric. At an instant, when the radius of the cloud is R, all of its particles on the surface are observed receding radially away from the center of the cloud with a velocity V. What will the radius of the cloud be, when its expansion ceases?
I got the correct answer by writing the force equation of the differential element just at the edge of the spherical cloud. Also used self-energy of the differential shell element and got a workable differential equation.
What bothers me is, in the solution provided, they derive that the velocity profile is linear with "r", on the basis that at all times, density in the cloud is uniform regardless of radial distance. I wanted to ask that although at the given instance, the density is uniform, it's not necessary that it will remain so throughout the expansion. Moreover, my original answer is independent of the density function, does this mean that there can be different possible profiles of velocity and density variance. Please make me digest the fact that the density of the cloud remains uniform at all times or is it mentioned in the question itself and I am too blind to see it.
I got the correct answer by writing the force equation of the differential element just at the edge of the spherical cloud. Also used self-energy of the differential shell element and got a workable differential equation.
What bothers me is, in the solution provided, they derive that the velocity profile is linear with "r", on the basis that at all times, density in the cloud is uniform regardless of radial distance. I wanted to ask that although at the given instance, the density is uniform, it's not necessary that it will remain so throughout the expansion. Moreover, my original answer is independent of the density function, does this mean that there can be different possible profiles of velocity and density variance. Please make me digest the fact that the density of the cloud remains uniform at all times or is it mentioned in the question itself and I am too blind to see it.