- #1
chwala
Gold Member
- 2,746
- 387
- Homework Statement
- See attached problem with ms
- Relevant Equations
- binomial theorem
Find question here and ms... In part ##i## we could just as well expand directly hence reason why i am sharing...
My direct expansion for part (i),
$$(4-x)^{-\frac{1}{2}} =4^{-\frac{1}{2}}+\frac{(\frac{-1}{2}⋅4^{-\frac{3}{2}}⋅-x)}{1!}+\frac {(\frac{3}{2}⋅\frac{1}{2}⋅4^-\frac{5}{2}⋅(-x)^2)}{2!}=\frac{1}{2}+\frac{1}{16}x+\frac{3}{256}x^2+...$$
part (ii) follows directly from (i),
##(a+bx)(\frac{1}{2}+\frac{1}{16}x+\frac{3}{256}x^2+...)=16-x...##
##\frac{1}{2}a+\frac{1}{16}ax+\frac{3}{256}ax^2+\frac{1}{2}bx+\frac{1}{16}bx^2+\frac{3}{256}bx^3+...=16-x...##
giving us the two simultaneous equations indicated. cheers
My direct expansion for part (i),
$$(4-x)^{-\frac{1}{2}} =4^{-\frac{1}{2}}+\frac{(\frac{-1}{2}⋅4^{-\frac{3}{2}}⋅-x)}{1!}+\frac {(\frac{3}{2}⋅\frac{1}{2}⋅4^-\frac{5}{2}⋅(-x)^2)}{2!}=\frac{1}{2}+\frac{1}{16}x+\frac{3}{256}x^2+...$$
part (ii) follows directly from (i),
##(a+bx)(\frac{1}{2}+\frac{1}{16}x+\frac{3}{256}x^2+...)=16-x...##
##\frac{1}{2}a+\frac{1}{16}ax+\frac{3}{256}ax^2+\frac{1}{2}bx+\frac{1}{16}bx^2+\frac{3}{256}bx^3+...=16-x...##
giving us the two simultaneous equations indicated. cheers
Last edited: