- #1
CAF123
Gold Member
- 2,948
- 88
- TL;DR Summary
- Expansion about a branch point
I’m coming at this question with a physics application in mind so apologies if my language is a bit sloppy in places but I think the answer to my question is grounded in math so I’ll post it here.
Say I have a function F(z) defined in the complex z plane which has branch points at z=0 and z = 1 and branch cuts from -infinity to zero and from 1 to infinity. That is, the function is purely real (i.e. analytic) in the interval of z from 0 to 1.
Express F(z) = f(z)/(z-1)/z, extracting the singular points.
Now consider the region z<0. Suppose I want to expand the imaginary part of f(z)/(z-1) around z=0. What does it mean to expand this around a branch point z=0? Expansions are usually defined within a radius of convergence so for infinitesimal z>0 I am in the region of the complex z plane where the function is now real so I don’t know why or if such an expansion makes sense.
Hope my question makes sense. Thanks in advance.
Say I have a function F(z) defined in the complex z plane which has branch points at z=0 and z = 1 and branch cuts from -infinity to zero and from 1 to infinity. That is, the function is purely real (i.e. analytic) in the interval of z from 0 to 1.
Express F(z) = f(z)/(z-1)/z, extracting the singular points.
Now consider the region z<0. Suppose I want to expand the imaginary part of f(z)/(z-1) around z=0. What does it mean to expand this around a branch point z=0? Expansions are usually defined within a radius of convergence so for infinitesimal z>0 I am in the region of the complex z plane where the function is now real so I don’t know why or if such an expansion makes sense.
Hope my question makes sense. Thanks in advance.