- #1
Mentz114
- 5,432
- 292
I'm trying calculate the expected number of steps in one node in a random walk , ##\langle s\rangle=\sum sp^s##. By deduction I have a possible solution (for rational probabilities ##p=n/m,\ n< m##) in ##\bar{s}=\langle s\rangle= nm/(m-n)^2##, which looks pretty weird but I have not found a counterexample.
I thought I might prove it by calculating ##\Delta_k = \sum_k sp^s - \bar{s}## and showing that this tends to 0 as ##k\rightarrow \infty##. The general term is ##\Delta_k = \frac{n^{k+1}\left((k+1)n-km\right)}{m^k(m-n)^2}## and using ##k\approx k+1## this gives ##\frac{n}{n-m}kp^k##.
I suspect this is not a proof and if not is there another way ?
I thought I might prove it by calculating ##\Delta_k = \sum_k sp^s - \bar{s}## and showing that this tends to 0 as ##k\rightarrow \infty##. The general term is ##\Delta_k = \frac{n^{k+1}\left((k+1)n-km\right)}{m^k(m-n)^2}## and using ##k\approx k+1## this gives ##\frac{n}{n-m}kp^k##.
I suspect this is not a proof and if not is there another way ?