- #1
patric44
- 308
- 40
- Homework Statement
- prove that : <A^n>=<A>^n
- Relevant Equations
- <A^n>=<A>^n
hi all
how do I prove that
$$
<A^{n}>=<A>^{n}
$$
It seems intuitive but how do I rigorously prove it, My attempt was like , the LHS can be written as:
$$
\bra{\Psi}\hat{A}.\hat{A}.\hat{A}...\ket{\Psi}=\lambda^{n} \bra{\Psi}\ket{\Psi}=\lambda^{n}\delta_{ii}=\lambda^{n}
$$
and the RHS equal:
$$
<A>^{n}=[\bra{\Psi}A\ket{\Psi}]^{n}=\lambda^{n}[\bra{\Psi}\ket{\Psi}]^{n}=\lambda^{n}[\delta_{ii}]^{n}=\lambda^{n}
$$
Is my proof rigurus enough or there are other formal proof for that
how do I prove that
$$
<A^{n}>=<A>^{n}
$$
It seems intuitive but how do I rigorously prove it, My attempt was like , the LHS can be written as:
$$
\bra{\Psi}\hat{A}.\hat{A}.\hat{A}...\ket{\Psi}=\lambda^{n} \bra{\Psi}\ket{\Psi}=\lambda^{n}\delta_{ii}=\lambda^{n}
$$
and the RHS equal:
$$
<A>^{n}=[\bra{\Psi}A\ket{\Psi}]^{n}=\lambda^{n}[\bra{\Psi}\ket{\Psi}]^{n}=\lambda^{n}[\delta_{ii}]^{n}=\lambda^{n}
$$
Is my proof rigurus enough or there are other formal proof for that