- #1
Sci
- 2
- 0
Homework Statement
System of 2 particles with spin 1/2. Let
[tex]
\vert + \rangle =
\begin{pmatrix}
0 \\
1
\end{pmatrix} \\
\vert - \rangle =
\begin{pmatrix}
1 \\
0
\end{pmatrix}
[/tex]
singlet state [tex]
\vert \Phi \rangle = \frac{1}{\sqrt{2}} \Big( \vert + \rangle \otimes \vert - \rangle - \vert - \rangle \otimes \vert + \rangle \Big)
[/tex]
observables:
[tex]
(2 \vec{a} \vec{S}^1) \otimes 1 \\
(2 \vec{a} \vec{S}^1) \otimes (2 \vec{b} \vec{S}^2)
[/tex]
for arbitraty a,b
Homework Equations
[tex]
S_x^i=
\begin{pmatrix}
0 & 1\\
1 & 0
\end{pmatrix}
[/tex]
and similar for S_y and S_z
The Attempt at a Solution
I have to calculate
[tex]
\langle \Phi \vert(2 \vec{a} \vec{S}^1) \otimes 1 \vert \Phi \rangle
[/tex]
in the first task. Does the tensor product notation of Phi means that particle A is in state + and particle B is in state - or the other way round?
Does the 1 in the observable means that the state of B is simply ignored in the meaurement?
So does the first case simplify to
[tex]
\langle + \vert a_1 \hat S_x +a_2 \hat S_y +a_3 \hat S_z \vert + \rangle -
\langle - \vert a_1 \hat S_x +a_2 \hat S_y +a_3 \hat S_z \vert - \rangle
[/tex]
and the expectation value becomes zero, as expected for the singlet state