- #1
pstq
- 10
- 0
Hi all!
If we consider the hydrogen atom as a spinless particle. Let this system in the state
[itex] \Psi ( \vec{r} )= \frac{1}{6} [4 \Psi_{100} ( \vec{r} )+ 3 \Psi_{211}- \Psi_{210} ( \vec{r} ) + \sqrt{10}\Psi_{21-1} ( \vec{r} )] [/itex]
Calculate:
1) Expectation value of energy when measured from this state.
2) Expectation value of z-component orbital angular momentum
3) Expectation value of x-component orbital angular momentum
[itex]\langle \vec{r} | nlm \rangle =\Psi_{nlm} ( \vec{r} ) = R_{nl} (r) Y_{lm} (\Omega) [/itex]
[itex]E_n = -\frac { \alpha^2}{2 n^2} \mu c^2 [/itex]
1) For the expectation value for the energy , [itex] \langle H \rangle = \langle \Psi ( \vec{r} ) | H | \Psi ( \vec{r} ) \rangle = \frac {1}{36} [ 16 \langle \Psi_{100} | H | \Psi_{100} \rangle + 9 \langle \Psi_{211} | H | \Psi_{211} \rangle + \langle \Psi_{210} | H | \Psi_{210} \rangle + 10 \langle \Psi_{21-1} | H | \Psi_{21-1} \rangle ] =?? [/itex]
In this point I should be able to put the eigen-energy [itex]E_n = -\frac { \alpha^2}{2 n^2} \mu c^2 [/itex] but I don't know how I can do that.
2)
I did the same as before..
[itex] \langle L_z \rangle = \langle \Psi ( \vec{r} ) | L_z | \Psi ( \vec{r} ) \rangle = \frac {1}{36} [ 16 \langle \Psi_{100} | L_z | \Psi_{100} \rangle + 9 \langle \Psi_{211} | L_z | \Psi_{211} \rangle + \langle \Psi_{210} | L_z | \Psi_{210} \rangle + 10 \langle \Psi_{21-1} | L_z | \Psi_{21-1} \rangle ] [/itex] but I have no idea what's the next step-
3) the same problem as before.
Do you know what I'm doing wrong?
Thanks in advance!
Homework Statement
If we consider the hydrogen atom as a spinless particle. Let this system in the state
[itex] \Psi ( \vec{r} )= \frac{1}{6} [4 \Psi_{100} ( \vec{r} )+ 3 \Psi_{211}- \Psi_{210} ( \vec{r} ) + \sqrt{10}\Psi_{21-1} ( \vec{r} )] [/itex]
Calculate:
1) Expectation value of energy when measured from this state.
2) Expectation value of z-component orbital angular momentum
3) Expectation value of x-component orbital angular momentum
Homework Equations
[itex]\langle \vec{r} | nlm \rangle =\Psi_{nlm} ( \vec{r} ) = R_{nl} (r) Y_{lm} (\Omega) [/itex]
[itex]E_n = -\frac { \alpha^2}{2 n^2} \mu c^2 [/itex]
The Attempt at a Solution
1) For the expectation value for the energy , [itex] \langle H \rangle = \langle \Psi ( \vec{r} ) | H | \Psi ( \vec{r} ) \rangle = \frac {1}{36} [ 16 \langle \Psi_{100} | H | \Psi_{100} \rangle + 9 \langle \Psi_{211} | H | \Psi_{211} \rangle + \langle \Psi_{210} | H | \Psi_{210} \rangle + 10 \langle \Psi_{21-1} | H | \Psi_{21-1} \rangle ] =?? [/itex]
In this point I should be able to put the eigen-energy [itex]E_n = -\frac { \alpha^2}{2 n^2} \mu c^2 [/itex] but I don't know how I can do that.
2)
I did the same as before..
[itex] \langle L_z \rangle = \langle \Psi ( \vec{r} ) | L_z | \Psi ( \vec{r} ) \rangle = \frac {1}{36} [ 16 \langle \Psi_{100} | L_z | \Psi_{100} \rangle + 9 \langle \Psi_{211} | L_z | \Psi_{211} \rangle + \langle \Psi_{210} | L_z | \Psi_{210} \rangle + 10 \langle \Psi_{21-1} | L_z | \Psi_{21-1} \rangle ] [/itex] but I have no idea what's the next step-
3) the same problem as before.
Do you know what I'm doing wrong?
Thanks in advance!