Expectation Values of Radii in the Hydrogen Atom

In summary, the task is to determine the expectation value of the radius and the associated mean square error for the hydrogen atom states 1s and 2p. The relevant wave functions are provided from Demtroeder's Experimental Physics Volume 3, and the normalized complete eigenfunctions are used. The expectation value for the radius is calculated using the formula <\psi|r|\psi>=\int_0^r\int_0^{\pi}\int_0^{2\pi} r\cdot\psi^2\cdot r^2\sin(\theta)~dr~d\theta~d\phi. For 1s, the result is <r>=\frac{3}{2}a_0,
  • #1
Lunar_Lander
38
0

Homework Statement



Determine for the hydrogen atom states 1s and 2p the expectation value of the radius r and the associated mean square error Δr.

Homework Equations



Wave Functions for 1s and 2p from Demtroeder's Experimental Physics Volume 3 (it says "The normalized complete eigenfunctions of an electron in the Coulomb potential [itex]V(r)=-Z\cdot e^2/(4\pi\epsilon_0r)[/itex]", is this what we need?) :

[itex]\psi_{1s}(r,\theta,\phi)=\frac{1}{\sqrt{\pi}}(Z/a_0)^{3/2}\cdot e^{-Zr/a_0}[/itex]
[itex]\psi_{2p_0}(r,\theta,\phi)=\frac{1}{4\sqrt{2\pi}}(Z/a_0)^{3/2}\cdot\frac{Zr}{a_0}\cdot e^{-Zr/2a_0}\cos(\theta)[/itex]

[itex]\Delta r=\sqrt{<(r-\overline{r})^2>}[/itex]

The Attempt at a Solution


Well, as in the neighbour thread (https://www.physicsforums.com/showthread.php?t=562573), the expectation value for r seems to be [itex]<\psi|r|\psi>=\int_0^r\int_0^{\pi}\int_0^{2\pi} r\cdot\psi^2\cdot r^2\sin(\theta)~dr~d\theta~d\phi[/itex], which I would, being naive, simplify to [itex]<r>=\int_0^r\int_0^{\pi}\int_0^{2\pi} \cdot\psi^2\cdot r^3\sin(\theta)~dr~d\theta~d\phi[/itex]. As we are in Hydrogen, Z should be 1.

Then I tried 1s. I get
[itex]\psi^2=\frac{Z^3\exp(-\frac{2rZ}{a_0})}{\pi\cdot a_0^3}=\frac{1}{a_0^3\pi}\exp(-\frac{2r}{a_0})[/itex]
Phi Integration:
[itex]\int_0^r\int_0^{\pi} 2\pi \frac{1}{a_0^3\pi}\exp(-\frac{2r}{a_0}) \cdot r^3\sin(\theta)~dr~d\theta[/itex]
Theta Integration:
[itex]\int_0^r 4\pi \frac{1}{a_0^3\pi}\exp(-\frac{2r}{a_0}) \cdot r^3~dr[/itex]
[itex]\int_0^r \frac{4}{a_0^3}\exp(-\frac{2r}{a_0}) \cdot r^3~dr[/itex]
r Integration:
[itex]\frac{4}{a_0^3} \int_0^r \exp(-\frac{2r}{a_0}) \cdot r^3~dr[/itex]
[itex]<r>_{1s}=\frac{4}{a_0^3} 6a_0^4-a_0\cdot\exp(-r/a_0)(6a_0^3+6a_0^2 r+3a_0r^2+r^3)[/itex]

Is this the right track?

PS: There is a third wave function for 2p, for m=+/-1: [itex]\psi_{2p_{\pm 1}}(r,\theta,\phi)=\frac{1}{8\sqrt{2\pi}}(Z/a_0)^{3/2}\cdot\frac{Zr}{a_0}\cdot e^{-Zr/2a_0}\sin(\theta)\cdot e^{\pm i\varphi}[/itex]
So two more calculations to run?
 
Last edited:
Physics news on Phys.org
  • #2
I also attempted a run at the 2p (for m=0) and it looks like this:

[itex]\psi_{2p_0}^2=\frac{1}{32\pi\cdot a_0^5}\cdot r^2Z^5\exp(-\frac{2Z\cdot r}{a_0})\cdot\cos^2(\theta)[/itex]

[itex]<r>=\frac{1}{32\pi\cdot a_0^5}\int_0^r \int_0^{\pi} \int_0^{2\pi} r^2Z^5\exp(-\frac{2Z\cdot r}{a_0})\cdot\cos^2(\theta)\cdot r^2\sin(\theta)~dr~d\theta~d\phi[/itex]

[itex]<r>=\frac{1}{32\pi\cdot a_0^5}\int_0^r \int_0^{\pi} \int_0^{2\pi} r^2Z^5\exp(-\frac{2Z\cdot r}{a_0})\cdot\cos^2(\theta)\cdot r^2\sin(\theta)~dr~d\theta~d\phi~|Z=1[/itex]

[itex]=\frac{1}{16\cdot a_0^5}\int_0^r \int_0^{\pi} r^4\exp(-\frac{2r}{a_0})\cdot\cos^2(\theta)\cdot \sin(\theta)~dr~d\theta[/itex]

[itex]=\frac{1}{24\cdot a_0^5}\int_0^r r^4\exp(-\frac{2r}{a_0})~dr[/itex]

[itex]=\frac{1}{96}(3-\frac{\exp(-\frac{2r}{a_0})(3a_0^4+6a_0^3r+6a_0^2r^2+4a_0r^3+2r^4)}{a_0})[/itex]
 
Last edited:
  • #3
I think I got it now. First of all I learned that the 2p energy level is degenerate, thus m should have no influence on it and there is only one calculation to do for 2p.

Then I tried to calculate 1s:

[itex]\psi_{1s}=\frac{1}{\sqrt{\pi}}(\frac{Z}{a_0})^{3/2}\exp(-\frac{Zr}{a_0})[/itex]

As we are discussing hydrogen, [itex]Z=1[/itex].

[itex]<r>=<\psi|r|\psi>=\int_0^{\infty}\int_0^{\pi}\int_0^{2\pi} r\psi^2 r^2 \sin(\theta)~dr~d\theta~d\varphi[/itex]

[itex]=\int_0^{\infty}\int_0^{\pi}\int_0^{2\pi} \psi^2 r^3 \sin(\theta)~dr~d\theta~d\varphi[/itex]

[itex]=\int_0^{\infty}\int_0^{\pi}\int_0^{2\pi} \frac{1}{\pi a_0^3}\exp(-\frac{2r}{a_0}) r^3 \sin(\theta)~dr~d\theta~d\varphi[/itex]

[itex]=\int_0^{\infty}\int_0^{\pi} \frac{2}{a_0^3}\exp(-\frac{2r}{a_0}) r^3
\sin(\theta)~dr~d\theta[/itex]

[itex]=\int_0^{\infty} \frac{4}{a_0^3}\exp(-\frac{2r}{a_0}) r^3 ~dr[/itex]

[itex]<r>=\frac{3}{2}a_0[/itex]

To get the mean squared error which is [itex]\Delta r=<r^2>-<r>[/itex], I did the calculation above with [itex]<\psi|r^2|\psi>[/itex] and got as an result [itex]<r^2>=3a_0^2[/itex], so [itex]\Delta r_{1s}=3a_0^2-\frac{3}{2}a_0[/itex].

2p:
[itex]\psi_{2p}=\frac{1}{4\sqrt{2\pi}}(\frac{Z}{a_0})^{3/2}\frac{Zr}{a_0}\exp(-\frac{Zr}{2a_0})\cos(\theta)[/itex]

[itex]<r>=<\psi|r|\psi>=\int_0^{\infty}\int_0^{\pi}\int_0^{2\pi} r\psi^2 r^2 \sin(\theta)~dr~d\theta~d\varphi[/itex]

[itex]\int_0^{\infty}\int_0^{\pi}\int_0^{2\pi} \psi^2 r^3 \sin(\theta)~dr~d\theta~d\varphi[/itex]

[itex]\int_0^{\infty}\int_0^{\pi}\int_0^{2\pi} \frac{1}{32\pi a_0^5} r^2\exp(-\frac{r}{a_0})\cos^2(\theta) r^3 \sin(\theta)~dr~d\theta~d\varphi[/itex]

[itex]\int_0^{\infty}\int_0^{\pi}\int_0^{2\pi} \frac{1}{32\pi a_0^5} r^5\exp(-\frac{r}{a_0})\cos^2(\theta) \sin(\theta)~dr~d\theta~d\varphi[/itex]

[itex]\int_0^{\infty}\int_0^{\pi} \frac{1}{16 a_0^5} r^5\exp(-\frac{r}{a_0})\cos^2(\theta) \sin(\theta)~dr~d\theta[/itex]

[itex]\int_0^{\infty} \frac{1}{24 a_0^5} r^5\exp(-\frac{r}{a_0})~dr[/itex]

[itex]<r>=5a_0[/itex]

[itex]<r^2>=30a_0[/itex], [itex]\Delta r_{2p}=30a_0^2-5a_0[/itex]

Please let me know if there are any comments.
 
Last edited:

FAQ: Expectation Values of Radii in the Hydrogen Atom

1. What is the significance of expectation values of radii in the hydrogen atom?

The expectation values of radii in the hydrogen atom give us a measure of the average distance of the electron from the nucleus. This is important in understanding the structure and behavior of the atom.

2. How are expectation values of radii calculated in the hydrogen atom?

The expectation values of radii are calculated using the wave function of the electron in the hydrogen atom. The wave function is squared and multiplied by the distance from the nucleus, then integrated over all possible distances.

3. What is the relationship between expectation values of radii and energy levels in the hydrogen atom?

The expectation values of radii are directly related to the energy levels of the hydrogen atom. As the electron moves further away from the nucleus, the energy level increases and the expectation value of the radius also increases.

4. How do the expectation values of radii change with increasing atomic number?

The expectation values of radii decrease as the atomic number increases in the hydrogen atom. This is because the attractive force between the positively charged nucleus and the negatively charged electron increases with increasing atomic number, causing the electron to be pulled closer to the nucleus.

5. What is the significance of the Bohr radius in calculating expectation values of radii in the hydrogen atom?

The Bohr radius is a fundamental constant that is used in calculating the expectation values of radii in the hydrogen atom. It represents the most probable distance of the electron from the nucleus and is used as a reference point in determining the average distance of the electron from the nucleus.

Back
Top