- #1
AxiomOfChoice
- 533
- 1
Let [itex]B_t[/itex] be Brownian motion in [itex]\mathbb R[/itex] beginning at zero. I am trying to find expressions for things like [itex]E[(B^n_s - B^n_t)^m][/itex] for [itex]m,n\in \mathbb N[/itex]. So, for example, I'd like to know [itex]E[(B^2_s - B^2_t)^2][/itex] and [itex]E[(B_s - B_t)^4][/itex]. Here are the only things I know:
- [tex]E[B_t^{2k}] = \frac{(2k)!}{2^k \cdot k!}[/tex]
- [tex]E[B_s B_t] = \min(s,t)[/tex]
- [tex]E[(B_s - B_t)^2] = |s-t|[/tex]
- Brownian motion has independent increments.